doi: 10.15389/agrobiology.2020.5.981eng

UDC: 633.491:631.527:577.2:632

Supported financially by Federal Program for Development of Potato Breeding and Seed Production during 2017-2025 (No. 0481-2018-0023). DNA samples of potato cultivars and hybrids used in MAS are deposited in the DNA bank of potato samples supported under the Program 0662-2019-0004



N.M. Gadjiyev1, V.A. Lebedeva1, D.A. Rybakov2, A.V. Ivanov1,
V.V. Zheltova2, N.A. Fomina2, O.Yu. Antonova2, T.A. Gavrilenko2

1Leningrad Research Institute for Applied Agricultural Science «Belogorka» — Branch of Lorkh Russian Potato Research Center, 1, ul. Institutskaya, Belogorka, Gatchina District, Laningrad Province, 188338 Russia, e-mail,,;
2Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia, e-mail,,,, (✉ corresponding author)

Gadjiyev N.M.
Zheltova V.V.
Lebedeva V.A.
Fomina N.A.
Rybakov D.A.
Antonova O.Yu.
Ivanov A.V.
Gavrilenko T.A.

Received July 20, 2020


The success of breeding research is in many ways determined by the successful selection of parental forms for hybridization. In recent years, along with traditional approaches, the results of marker-assisted selection (MAS) are actively used for the selection of parental lines, in order to combine valuable alleles of parental genotypes. Such programs are widely used for different crops in many countries, including Russia. The use of MAS is promising both at the initial stage in the selection of parental samples for crosses and at the stages of analysis of segregating hybrid populations. In this work, the selection of parental potato varieties for crosses was carried out based on the results of MAS of initial varieties with markers of R-genes conferring resistance to various harmful organisms as well as based on their economically valuable characters. To increase the efficiency of the selection of promising hybrid genotypes obtained in intervarietal crosses, we used an integrated approach that combines MAS with markers of R-genes for resistance to various diseases and pests with traditional methods for assessing economically valuable traits of hybrid populations. The resulting hybrids of three combinations (Gusar × Charoit), (Gusar × Aliy Parus), (Gusar × Sireneviy tuman) also participated in MAS with 8 markers of 6 R-genes conferring resistance to potato virus Y (Rysto) and potato virus X (Rx1), to golden (H1) and pale (Gpa2) potato cyst nematodes, and race-specific resistance to late blight (R1, R3A). Almost all the hybrids had different combinations of R-gene markers. To identify the allelic composition of the R-genes in the parental varieties, the segregation of DNA markers in each combination was analyzed, which allowed us to determine the level of heterozygosity of the marked loci in the parental varieties. Main economically valuable characters of the hybrids were also evaluated in the field trials. As a result, out of 144 hybrids, 31 genotypes were identified that have one or the other economically valuable traits (yield, marketability, shape of tubers, starch content, field resistance to late blight), and 113 hybrids were rejected. In 23 of the 31 selected hybrids, productivity varied from 600 to 1525 grams per plant. Twelve of these 23 hybrid genotypes combined relatively high productivity and marketability of tubers with various combinations of Rysto, Rx1, H1, Gpa2, R1, and R3A gene markers. Thus, the use of an integrated approach that combines traditional breeding methods and MAS increases the efficiency of the selection of promising genotypes with a given set of traits.The selected hybrid genotypes are of interest for further breeding aimed at creating competitive varieties with complex resistance to various pathogens and pests, including viral and nematode resistance, that will need fewer chemical treatments to protect the crop.

Keywords: potato, varieties, hybrids, valuable traits, disease resistance, R-genes, DNA markers, MAS, PVY, PVX, potato viruses, Globodera rostochiensis, the golden potato cyst nematode, Globodera pallida, the pale potato cyst nematode, late blight, Phytophthora infestans.



  1. Zykin V.A. Sistemnyi analiz problemy podbora par dlya gibridizatsii. In: Selektsiya i semenovodstvo sel'skokhozyaistvennykh kul'tur v Zapadnoi Sibiri [Selection and seed production of agricultural crops in Western Siberia]. Novosibirsk, 1984: 3-12 (in Russ.).
  2. Syukov V.V. Metody podbora roditel'skikh par dlya gibridizatsii u samoopylyayushchikhsya rastenii [Methods for the selection of parental pairs for hybridization in self-pollinating plants]. Samara, 2014 (in Russ.).
  3. Lepekhov S.B. Trudy po prikladnoi botanike, genetike i selektsii, 2017, 178(4): 76-89 CrossRef (in Russ.).
  4. Simko I., Jansky S., Stephenson S., Spooner D. Genetics of resistance to pests and disease. In: Potato biology and biotechnology: advances and perspectives. D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, M. Taylor, D. MacKerron, H. Ross (eds.). Elsevier, St. Louis, MO, 2007: 117-155.
  5. Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet., 2013, 29(4): 248-256 CrossRef
  6. Milczarek D., Przetakiewicz A., Kamiński P., Flis B. Early selection of potato clones with the H1 resistance gene — the relation of nematode resistance to quality characteristics. Czech J. Genet. Plant Breed., 2014, 50(4): 278-284 CrossRef
  7. Ottoman R.J., Hane D.C., Brown C.R., Yilma S., James S.R., Mosley A.R., James M.C., Vales M.I. Validation and implementation of marker-assisted selection (MAS) for PVY resistance (Ryadg gene) in a tetraploid potato breeding program. American Journal of Potato Research, 2009, 86: 304-314 CrossRef
  8. Nie X., Chen H., Zhang J., Zhang Y., Yang J., Pan H., Song W.X., Murad F., He Y.Q. Bian K. Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating the IRS-1/PI3K/Akt and AMPK/ACC2 signaling pathways. Acta Pharmacologica Sinica, 2016, 37(4): 483-496 CrossRef
  9. Gebhardt C., Bellin D., Henselewski H., Lehmann W., Schwarzfischer J., Valkonen J.P.T. Marker-assisted combination of major genes for pathogen resistance in potato. Theoretical and Applied Genetics, 2006, 112: 1458-1464 CrossRef
  10. Mori K., Sakamoto Y., Mukojima N., Tamiya S., Nakao T., Ishii T., Hosaka K. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica, 2011, 180: 347-355 CrossRef
  11. Mori K., Asano K., Tamiya S., Nakao T., Mori M. Challenges of breeding potato cultivars to grow in various environments and to meet different demands. Breeding Science, 2015, 65: 3-16 CrossRef
  12. Asano K., Tamiya S. Breeding of pest and disease resistant potato cultivars in Japan by using classical and molecular approaches. The Japan Agricultural Research Quarterly, 2016, 50(1): 1-6 CrossRef
  13. Milczarek D., Plich J., Tatarowska B., Flis B. Early selection of potato clones with resistance genes: the relationship between combined resistance and agronomical characteristics. Breeding Science, 2017, 67: 416-420 CrossRef
  14. Zoteeva N.M., Antonova O.Yu., Klimenko N.S., Apalikova O.V., Carlson-Nilsson U., Karabitsina Yu.I., Ukhatova Yu.V., Gavrilenko T.A. Facilitation of introgressive hybridization of wild polyploid mexican potato species using DNA markers of r genes and of different cytoplasmic types. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(5): 964-975 CrossRef
  15. Sainakova A.B., Romanova M.S., Krasnikov S.N., Litvinchuk O.V., Alekseev Ya.I., Nikulin A.V., Terent'eva E.V. Vavilovskii zhurnal genetiki i selektsii, 2018, 22(1): 18-24 CrossRef (in Russ.).
  16. Rogozina E.V., Terent'eva E.V., Potokina E.K., Yurkina E.N., Nikulin A.V., Alekseev Ya.I. Multiplex PCR-based identification of potato genotypes as donors in breeding for resistance to diseases and pests. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(1): 19-30 CrossRef
  17. Bradshaw J.E., Mackay G.R. Breeding strategies for clonally propagated potatoes. In: Potato genetics. J.E. Bradshaw, G.R. Mackay (eds.). CABI, Wallingford (UK), 1994: 467-497.
  18. Wu R., Gallo-Meagher M., Littell R.C., Zeng Z.-B. A general polyploid model for analyzing gene segregation in outcrossing tetraploid species. Genetics, 2001, 159(2): 869-882.
  19. Skupinova S., Vejl P., Sedlak P., Domkarova J. Segregation of DNA markers of potato (Solanum tuberosum ssp. tuberosum L.) resistance against Ro1 pathotype Globodera rostochiensis in selected F1 progeny. Rostlinna vyroba, 2002, 48(11): 480-485.
  20. Ermishin A.P., Svitoch O.V., Voronkova E.V., Gukasyan O.N., Luksha V.I. Opredelenie sostava i allel'nogo sostoyaniya genov ustoichivosti k boleznyam i vreditelyam u roditel'skikh linii kartofelya s pomoshch'yu DNK markerov. Genetika, 2016, 52(5): 569-578 CrossRef
  21. Kneib R., Kneib R., da Silva Pereira A., Castro C.M. Allele dosage of PVY resistance genes in potato clones using molecular markers. Crop Breeding and Applied Biotechnology, 2017, 17: 306-312 CrossRef
  22. Lebedeva N.A. Trudy MOIP, otd. biol., 1962, 5: 215-221 (in Russ.).
  23. Lebedeva N.A. Tezisy dokladov 2-go soveshchaniya po poliploidii [Theses of reports of the 2nd Meeting on polyploidy]. Leningrad, 1963: 28-29 (in Russ.).
  24. Lebedeva N.A. Kartofel' i ovoshchi, 1965, 4: 20-24 (in Russ.).
  25. Antonova O.Yu., Shvachko N.A., Novikova L.Yu., Shuvalov O.Yu., Kostina L.I., Klimenko N.S., Shuvalova A.R., Gavrilenko T.A. Vavilovskii zhurnal genetiki i selektsii, 2016, 20(5): 596-606 CrossRef (in Russ.).
  26. Gavrilenko T.A., Klimenko N.S., Antonova O.Yu., Lebedeva V.A., Evdokimova Z.Z., Gadzhiev N.M., Apalikova O.V., Alpat'eva N.V., Kostina L.I., Zoteeva N.M., Mamadbokirova F.T., Egorova K.V. Vavilovskii zhurnal genetiki i selektsii, 2018, 22(1): 35-45 CrossRef (in Russ.).
  27. Khyutti A.V., Antonova O.Yu., Mironenko N.V., Gavrilenko T.A., Afanasenko O.S. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(1): 51-61 CrossRef (in Russ.).
  28. Gavrilenko T.A., Klimenko N.S., Alpat'eva N.V., Kostina L.I., Lebedeva V.A., Evdokimova Z.Z., Apalikova O.V., Novikova L.Yu., Antonova O.Yu. Vavilovskii zhurnal genetiki i selektsii, 2019, 23(6): 753-764 CrossRef (in Russ.).
  29. Lebedeva V.A. Selektsiya kartofelya na osnove mezhvidovoi gibridizatsii [Potato breeding based on interspecific hybridization]. St. Petersburg, 2010 (in Russ.).
  30. Lebedeva V.A., Gadzhiev N.M.  Materialy Mezhdunarodnogo kongressa «Agrorus» [Proc. Int. Congress «Agrorus»]. St. Petersburg, 2014: 19-20 (in Russ.).
  31. Gadzhiev N.M., Lebedeva V.A.  Zashchita kartofelya, 2015, 2: 16 (in Russ.).
  32. Gavrilenko T., Antonova O., Shuvalova A., Krylova E., Alpatyeva N., Spooner D.M., Novikova L. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution, 2013, 60(7): 1997-2015 CrossRef
  33. Ahmadvand R., Wolf I., Gorji A.M., Polgár Z., Taller J. Development of molecular tools for distinguishing between the highly similar Rx1 and Rx2 PVX extreme resistance genes in tetraploid potato. Potato Research, 2013, 56(4): 277-291 CrossRef
  34. Song Y.-S., Schwarzfischer A. Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. American Journal of Potato Research, 2008, 85(2): 159-170 CrossRef
  35. Schultz L., Cogan N.O.I., Mclean K., Dale M.F.B., Bryan G.J., Forster J.N.W., Slater A.T. Evaluation and implementation of a potential diagnostic molecular marker for H1-conferred potato cyst nematode resistance in potato. Plant Breeding, 2012, 131: 315-321 CrossRef
  36. Asano K., Kobayashi A., Tsuda S., Nishinaka M., Tamiya S. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan. Breeding Science, 2012, 62(2): 142-150 CrossRef
  37. Ballvora A., Ercolano M.R., Weiss J., Meksem K., Bormann C.A., Oberhagemann P., Salamini F., Gebhardt C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal, 2002, 30(3): 361-371 CrossRef
  38. Huang S., van der Vossen E.A.G., Kuang H., Vleeshouwers V.G., Zhang N., Borm T.J.A., van Eck H.J., Baker B., Jacobsen E., Visser R.G.F. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal, 2005, 42(2): 251-261 CrossRef
  39. Banadysev S.A., Starovoitov A.M., Kolyadko I.I., Makhan'ko V.L., Fando V.V., Kozlova L.I., Kolyadko O.M., Nezakonova L.V., Goncharova N.N., Vologdina L.N., Stadnikov I.A., Gribko A.P. Metodicheskie rekomendatsii po spetsializirovannoi otsenke sortov kartofelya [Methodical recommendations for specialized assessment of potato varieties]. Minsk, 2003 (in Russ.).
  40. Simakov E.A., Sklyarova N.P., Yashina I.M. Metodicheskie ukazaniya po tekhnologii selektsionnogo protsessa kartofelya [Methodical instructions on the technology of the potato breeding]. Moscow, 2006 (in Russ.).
  41. Simakov E.A. Anisimov B.V., Shabanov A.E., Zebrin S.N., Yurlova S.M., Oves E.V., Zeiruk V.N., Uskov A.I., Fedotova L.S., Filippova G.I. Metodicheskie polozheniya po provedeniyu otsenki sortov kartofelya na ispytatel'nykh (testovykh) uchastkakh [Methodological provisions for the assessment of potato varieties at test sites]. Moscow, 2013 (in Russ.).
  42. Rokitskii P.F. Biologicheskaya statistika [Biostatistics]. Moscow, 1973 (in Russ.).
  43. Dalamu V.B., Umamaheshwari R., Sharma R., Kaushik S., Joseph T., Singh B., Gebhardt C. Potato cyst nematode (PCN) resistance: genes, genotypes and markers. SABRAO Journal of Breeding and Genetics, 2012, 44(2): 202-228.
  44. Van der Vossen E.A.G., van der Voort J.R., Kanyuka K., Bendahmane A., Sandbrink H., Baulcombe D.C., Bakker J., Stiekema W.J., Klein-Lankhorst R.M. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. The Plant Juornal, 2000, 23(5): 567-576 CrossRef






Full article PDF (Rus)

Full article PDF (Eng)