PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.5.876eng

UDC: 635.64:631.52:577.2

 

LARGE FRUIT OF TOMATO Solanum lycopersicum L.: GENETIC DETERMINANTS, ORGANOGENESIS AND FRUIT DEVELOPMENT(review)

I.T. Balashova , S.M. Sirota, E.V. Pinchiuk

Federal Research Center for Vegetable Growing, 14, ul. Selektsionnaya, pos. VNIISSOK, Odintsovskii Region, Moscow Province, 143080 Russia, e-mail: balashova56@mail.ru ( corresponding author), sirota@vniissok.ru, techh620@yandex.ru

ORCID:
Balashova I.T. orcid.org/0000-0001-7986-2241
Pinchiuk E.V. orcid.org/0000-0003-0824-8864
Sirota S.M. orcid.org/0000-0001-5792-8502

Received December 3, 2019

 

Large fruit in Solanum lycopersicum L. is the result of domestication. We were interested in the appearance of large fruits in tomato in connection with the practice task to get new tomato forms with large fruits for multi-tiered hydroponic and aeroponic installations for vertical fruit production in greenhouses. Using the technology of target tomato breeding we obtained the first special dwarf tomato varieties Natasha and Timosha with small fruits for multi-tiered hydroponic installations. Obtaining of large fruit in tomato is connected with genetic and epigenetic control of the trait (An. Frary et al., 2000; B. Cong et al., 2006; Z. Huang et al., 2011; S. Wang, et al., 2011; A.J. Monforte et al., 2014; L. Azzi et al., 2015). The goal of this review is to summarize data on genetic determinants the trait of “size/weight of the fruit”, analysis processes of organogenesis, hormone and metabolic regulation of fruit development. Analysis of papers dedicated to fruit weight increasing during domestication shows the availability of 37 loci involved in regulation of cell division and enlargement at four different stages of fruit development, starting from the phases of ovary development and fruit set to the phases of cell development and enlargement of cells which form the mature fruit. Some of these loci are connected with processes of hormonal plant development at the phase of anthesis, fertilization, formation of fruits and seeds, and so, they are involved in auxin (SlPIN4, SlTIR1, SlARF7, SlARF8, SlIAA9) and gibberellin (SlGA20ox1, SlDELLA1) signaling pathways. Others control cell enlargement during fruit development and maturing, and so, they are involved in regulation of primary (HXK1, SuSY, LIN5, TIV1, mMDH, cpFBP, SPA) and secondary (NOTABILIS/NCED1, FLACCA, Gal-LDH, GME) metabolism. Individual group of loci controls cell cycle at the period of ovary development (TAGL1, FAS, LC, SlWUS, SlIMA) and fruit growth (SlCDKA1, SlCDCB1, SlCDKB2 and SlCCS52A, SlWEE1, SlKRP1) (L. Azzi et al., 2015). The fw2.2 is the first locus which has been described in detail (An. Frary et al., 2000). Locus fw2.2 controls the small fruit size in S. lycopersicum and is semidominant to allele FW2.2 of large fruit size. With transgenic lines, it had been established, that locus fw2.2 is carried by cos50. Sequence analysis of the cos50 had identified two open reading frames. One of them contain a single recombinant event, which delimited “the rightmost” end of the fw2.2 (XO33). Because genetic mutation(s) causing change in fruit size must be to the left of XO33, cDNA44 cannot be involved and open reading frame is the likely cause of the small-fruit phenotype. Next studies indicated that fw2.2 acts as a negative regulator of cell division during the very early stages of fruit development following pollination. Thus, fw2.2 is one ofregulatory QTLs, such as achaete-scute, scabrous and Delta QTLs in fruit flies, teosinte-branched 1(tb1) in maize and Hox genes in animals (cited by B. Cong et al., 2006). Possible, locus FW2.2 is positive regulator of cell division, which is involved in interaction with cytoplasmic membranes mediated by the regulatory (beta)-subunits of CKII kinase, that is well known in yeast and animals where it forms part of cell cycle related with signaling pathway (B. Cong et al., 2006).

  

Keywords: Solanum lycopersicum L., tomato, breeding, heritability, large fruits, average fruit weight, dwarfism, regulatory QTLs, fruit development.

 

REFERENCES

  1. Global Industry Report, 2014-2025, April, 2017, Report ID: IVR 1-68038-797-1.
  2. Balashova I.T., Sirota S.M., Pinchuk E.V. Vertical vegetable growing: creating tomato varieties for multi-tiered hydroponic installations. International Conference on Sustainable Development of Cross-Border Regions. IOP Conference Series: Earth and Environmental Science. Barnaul, 2019, 395 (012079): 1-8 CrossRef
  3. Sirota S.M., Balashova I.T., Kozar' E.G., Pinchuk E.V. Ovoshchi Rossii, 2016, 4(33): 3-9 (in Russ.).
  4. Balashova I.T., Sirota S.M., Kozar E.G., Pivovarov V.F. Target tomato breeding for special hydroponic technology. Abstracts of 20th EUCARPIA Congress. Switzerland, Zurich, 2016: 343.
  5. Balashova I.T., Sirota S.M., Kozar' E.G., Pinchuk E.V. Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta, 2017, 3(66): 71-74 (in Russ.).
  6. Pivovarov V.F., Balashova I.T., Sirota S.M., Kozar' E.G., Pinchuk E.V. Improvement of sporophyte selection for the purpose of acceleration of tomato breeding for narrow shelf hydroponics technology. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 1: 95-101 CrossRef
  7. Pivovarov V.F., Balashova I.T., Sirota S.M., Kozar' E.G., Pinchuk E.V. Analysis of hybridization effect by the appearance of target tomato traits in F2, F3 progenies in breeding for multi circle hydroponics. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(5): 1049-1055 CrossRef
  8. Gillaspy G., Ben-David H., Gruissem W. Fruits: a developmental perspective. The Plant Cell, 1993, 5(10): 1439-1451 CrossRef
  9. Tanksley S.D. The genetic, developmental and molecular bases of fruit size and shape variation in tomato. The Plant Cell Online, 2004, 16(suppl_1): 181-189 CrossRef
  10. Klee H.J., Giovannoni J.J. Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 2011, 45(1): 41-59 CrossRef
  11. Frary An., Nesbitt T.C., Frary Am., Grandillo S., Van der Knaap E., Cong B., Liu J.P., Meller J., Elber R., Alpert K.B., Tanksley S.D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, New Series, 2000, 289(5476): 85-88 CrossRef
  12. Grandillo S., Ku H.M., Tanksley S.D. Identifying loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 1999, 99(6): 978-987 CrossRef
  13. Azzi L., Deluche C., Gévudant F., Frangne N., Delmas F., Hernould M., Chevalier C. Fruit growth-related genes in tomato. Journal of Experimental Botany, 2015, 66(4): 1-12 CrossRef
  14. Cong B., Tanksley S.D. FW2.2 and cell cycle control in the developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Molecular Biology, 2006, 62(6): 867-880 CrossRef
  15. Guo M., Rupe M.A., Dieter J.A., Zou J., Spielbauer D., Duncan K.E., Howard R.J., Hou Z., Simmons S.R. Cell Number Regulator 1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. The Plant Cell, 2010, 22(4): 1057-1073 CrossRef
  16. Song W.Y., Choi K.S., Kim D.Y. Geisler M., Park J., Vincenzetti V., Schellenberg M., Kim S.H., Lim Y.P., Noh E.W., Lee Y., Martinoia E. Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. The Plant Cell, 2010, 22(7): 2237-2252 CrossRef
  17. Chakrabarti M., Zhang N., Sauvage C., Muñios S., Blanca J., Cañizares J., Diez M.J., Schneider R., Mazourek M., McClead J., Causse M., Van der Knaap E., A cytochrome P450 regulates a domestication trait in cultivated tomato. Proceedings of the National Academy of Sciences, 2013, 110(42): 17125-17130 CrossRef
  18. Anastasiou E., Kenz S., Gerstung M., MacLean D., Timmer J., Fleck C., Lenhard M. Control of plant organ size by KLUH/CYP78A5-depended intercellular signaling. Developmental Cell, 2007, 13(6): 843-856 CrossRef
  19. van der Knaap E., Tanksley S.D. The marking of a bell-pepper shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theoretical and Applied Genetics, 2003, 107(1): 139-147 CrossRef
  20. Huang Z., van der Knaap E. Tomato fruit weight 11.3 maps close to fascinated on the bottom on chromosome 11. Theoretical and Applied Genetics, 2011, 123(3): 465-474 CrossRef
  21. Monforte A.J., Diaz A., Caño-Delgrado A., van der Knapp E. The genetic basis of fruit morphology in the horticultural crops: lessons from tomato to melon. Journal of Experimental Botany, 2014, 65(16): 4525-4537 CrossRef
  22. Rodriguez G.R., Muños S., Anderson C., Sim S.C., Michel A., Causse M., McSpadden Gardener B.B., Francis D., van der Knapp E. Distribution of SAN, OVATE, LC and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 2011, 156(1): 275-285 CrossRef
  23. Liu J., Van Eck J., Cong B., Tanksley S.D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences, 2002, 99(20): 13302-13306 CrossRef
  24. Wang S., Chang Y., Guo J., Zeng Q., Ellis B.E., Chen J.G. Arabidopsis Ovate family proteins, a novel transcriptional repressor family, control multiply aspects of plant growth and development. PLoS ONE, 2011, 6(8): 23896 CrossRef
  25. Gonsalo M.J., van der Knapp E. A comparative analysis into the genetic basis of morphology in tomato varieties exhibiting elongated fruit shape. Theoretical and Applied Genetics, 2008, 116(5): 647-656 CrossRef
  26. Hackbusch J., Richter K., Müller J., Salamini F., Uhrig J.F. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of a 3-aa loop extension homeodomain proteins. Proceedings of the National Academy of Sciences, 2005, 102(13): 4908-4912 CrossRef
  27. Wang S., Chang Y., Guo J., Chen J.-G.  ArabidopsisOvate Family Protein1 is a transcriptional repressor, that suppresses cell elongation. The Plant Journal, 2007, 50(5): 858-872 CrossRef
  28. Xiao H., Jiang N., Schaffner E., Stockinger E.J., van der Knapp E. A retrotransposon-mediated gene duplication underlines morphological variation of tomato fruit. Science, 2008, 319(5869): 1527-1530 CrossRef
  29. Jiang N., Gao D., Xiao H., van der Knapp E. Genome organization of the tomato sun locus and characterization of unusual retrotransposon reader. The Plant Journal, 2009, 60(1): 181-193 CrossRef  
  30. Wu S., Xiao H., Cabrera A., Meulia T., van der Knapp E. SUN regulate vegetative and reproductive organ shape by changing cell division patterns. Plant Physiology, 2011, 157(3): 1175-1186 CrossRef
  31. Lippman Z., Tanksley S.D. Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicum pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics, 2001, 158(1): 413-422. 
  32. Barrero L.S., Cong B., Wu F., Tanksley S.D. Developmental characterization of the fascinated locus and mapping of the Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato. Genome, 2006, 49(8): 991-1006 CrossRef
  33. Cong B., Barrero L.S., Tanksley S.D. Regulatory change in YABBY-like transcriptional factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 2008, 40(6): 800-804 CrossRef
  34. Muños S., Ranc N., Botton E. Bérard A., Rolland S., Duffé P., Carretero Y., Le Paslier M.-C., Delalande C., Bouzayen M., Brunel D., Causse M. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiology, 2011, 156(4): 2244-2254 CrossRef
  35. van der Graaff E., Laux T., Rensing S.A. The WUS homeobox-cotaining (WOX) protein family. Genome Biology, 2009, 10(12): 248 CrossRef
  36. Barrero L.S., Tanksley S.D. Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theoretical and Applied Genetics, 2004, 109(3): 669-679 CrossRef
  37. Vrebalov J., Pan I.L., Arroyo A.J.M., McQuinn R., Chung M.Y., Poole M., Rose J., Seymour G., Grandillo S., Giovannoni J., Irish V.F. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. The Plant Cell, 2009, 21(10): 3041-3062 CrossRef
  38. Coombe B. The development of fleshy fruits. Annual review of plant physiology. Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, South Australia, 1976: 507-528.
  39. Ho L.C. Fruit growth and sink strength.In: Fruit and seed production: aspect of development, environmental physiology and ecology. C. Marshall, J. Grace (eds.). University Press, Cambridge, 1992: 101-124.
  40. Brukhin V., Hernould M., Gonzalez N., Chevaleir C., Mouras A. Flower development schedule in tomato, Lycopersicum esculentum cv. Sweet Cherry. Sexual Pant Reproduction, 2003, 15: 311-320 CrossRef
  41. Vriezen W.H., Feron R., Maretto F., Keijman J., Mariani C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytologist, 2008, 177(1): 60-76 CrossRef
  42. Ruan Y.-L., Patrick J.W., Bouzayen M., Osorio S., Fernie A.R. Molecular regulation of seed and fruit set. Trends in Plant Science, 2012, 17(11): 656-665 CrossRef
  43. Cheniclet C., Rong W.Y., Causse M., Frangne N., Bolling L., Carde J.-P., Ranaudin J.-P. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly tomato fruit growth. Plant Physiology, 2005, 139(4): 1984-1994 CrossRef
  44. Nagl W. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature, 1976, 261(5561): 614-615 CrossRef
  45. D’Amato F. Role of polyploidy in reproductive organs and tissues. In: Embryology of angiosperms. Springer, Berlin, Heidelberg, 1984: 519-566 CrossRef
  46. Bourdon M., Pirello J., Cheniclet C., Coriton O., Bourge M., Brown S., Moïse A., Peypelut M., Rouyère V., Renaudin J.-P., Chevalier C., Frangne N. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development, 2012, 139(20): 3817-3826 CrossRef
  47. Chevalier C., Nafati M., Mathieu-Rivet E., Bourdon M., Frangne N., Cheniclet C., Ranaudin J.P., Gévaudant F., Hernould M. Elucidation the functional role of endoreduplication in tomato fruit development. Annals of Botany, 2011, 107(7): 1159-1169 CrossRef
  48. De Jong M., Wolters-Arts M., Feron R., Mariani C., Vriezen W.H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. The Plant Journal, 2008, 57(1): 160-170 CrossRef
  49. Kumar R., Khurana A., Sharma A. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 2014, 65(16): 4561-4575 CrossRef
  50. Pattison R.J., Catalá C. Evaluating of auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. The Plant Journal, 2012, 70(4): 585-598 CrossRef
  51. Mounet F., Moing A., Kowalczyk M., Rohrmann. J., Petit J., Garcia V., Maucourt M., Yano K., Deborde C., Aoki K., Bergès H., Granell A., Fernie A.R., Bellini C., Rothan C., Lemaire-Chamley M. Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany, 2012, 63(13): 4901-4917 CrossRef
  52. Wang H., Jones B., Li Z., Frasse P., Delalande C., Regard F., Chaabouni S., Latché A., Pech J.C., Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. The Plant Cell, 2005, 17(10): 2676-2692 CrossRef
  53. Ren Z., Li Z., Miao Q., Yang Y., Deng W., Hao Y. The auxin receptor homolog in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. Journal of Experimental Botany, 2011, 62(8): 2815-2826 CrossRef
  54. Serrani J.C., Ruiz-Rivero O., Fos M., García‐Martínez J.L. Auxin-induced fruit set in tomato is mediated in part by gibberellins. The Plant Journal, 2008, 56(6): 922-934 CrossRef
  55. Serrani J.C., Sanjuan R., Ruiz-Rivero O., Fos M., Garsia-Martinez J.L. Gibberellin regulation of fruit set and growth in tomato. Plant Physiology, 2007, 145(1): 246-257 CrossRef
  56. Wang F., Sanz A., Brenner M.L., Smith A. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiology, 1993, 101(1): 321-327 CrossRef
  57. Giovannoni J.J. Genetic regulation of fruit development and ripening. The Plant Cell Online, 2004, 16(suppl_1): S170-S180 CrossRef
  58. Gapper N.E., MacQuinn R.P., Giovannoni J.J. Molecular and genetic regulation of fruit ripening. Plant Molecular Biology, 2013, 82(6): 575-591 CrossRef
  59. Carrari F., Fernie A.R. Metabolic regulation underlying tomato fruit development. Journal of Experimental Botany, 2006, 57(9): 1883-1897 CrossRef
  60. Tohge T., Alseekh S., Fernie A.R. On the regulation and function of secondary metabolism during fruit development and ripening. Journal of Experimental Botany, 2014, 65(16): 4599-4611 CrossRef
  61. Bohner J., Bangerth F. Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicum pimpinellifolium differing in fruit size. Physiologia Plantarum, 2006, 72(2): 316-320 CrossRef
  62. Bertin N., Cuatier H., Roche C. Number of cells in tomato fruit depending on fruit position and source-sink balance during plant development. Plant Growth Regulation, 2002, 36(2): 105-112 CrossRef
  63. Baldet P., Devaux C., Chevalier C., Brouquisse R., Just D., Raymond P. Contrasted responses to carbohydrate limitation in tomato fruit at two stages of development. Plant, Cell and Environment, 2002, 25(12): 1639-1649 CrossRef
  64. Baldet P., Hernould M., Laporte F., Mounet F., Just D., Mouras A., Chevalier C., Rothan C. The expression of cell proliferation-related genes in early developing flower is affected by fruit load reduction in tomato plants. Journal of Experimental Botany, 2006, 57(4): 961-970 CrossRef
  65. Fridman E., Pleban T., Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceeding of the National Academy of Sciences,2000, 97(9): 4718-4723 CrossRef
  66. Fridman E., Carrari F., Liu Y.S., Fernie A.R., Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305(5691): 1786-1789 CrossRef
  67. Zanor M.I., Osorio S., Nunes-Nesi A., Carrari F., Lohse M., Usadel B., Kühn C., Bleiss W., Giavalisco P., Willmitzer L., Sulpice R., Zhou Y.-H., Fernie A.R. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugar on the levels of fruit hormones and demonstrate the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology, 2009, 150(3): 1204-1218 CrossRef
  68. Gilbert L., Alhagdow M., Nunes-Nesi A., Quemener B., Guillon F., Bouchet B., Faurobert M., Gouble B., Page D., Garcia V., Petit J., Stevens R., Causse M., Fernie A.R., Lahaye M., Rothan C., Baldet P. GDP-d-mannose 3,5- epimerase (GME) plays a key role in the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. The Plant Journal, 2009, 60(3): 499-508 CrossRef
  69. Bermúdez L., Urias U., Mistein D., Kanenetzky L., Asis R., Fernie A.R., Van Sluys M.A., Carrari F., Rossi M. A candidate gene survey of quantitative trait loci, affecting chemical composition in tomato fruit. Journal of Experimental Botany, 2008, 59(10): 2875-2890 CrossRef
  70. Bermúdez L., de Godoy F., Baldet P., Demarco D., Osorio S., Quadrana L., Almeida J., Asis R., Gibon Y., Fernie A.R., Rossi M., Carrari F. Silencing of the tomato Sugar Partitioning Affecting protein (SPA), modifies sink strength through a shift a leaf sugar metabolism. The Plant Journal, 2014, 77(5): 676-687 CrossRef
  71. Chu Yi-H., Jang J.-Ch., Huang Z., Van der Knapp E. Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct,2019, 3(7): e00142 CrossRef
  72. Yuste-Lisbona F.J., Fernȧndez-Lozano A., Pineda B., Bretones S., Ortiz-Atienza A., Garcia-Sogo B., Müller N.A., Angosto T., Capel J., Moreno V., Jiménez-Gómez J.M., Lozano R. ENO regulates tomato fruit size through the floral meristem development network. Proceeding of the National Academy of Sciences,2020, 117(14): 8187-8195 CrossRef
  73. Mohan V., Gupta S., Thomas S., Mickey H., Charakana Ch., Chauhan V.S., Sharma K., Kumar R., Tyagi K., Sarma S., Gupta S.K., Kilambi H.V., Nongmaithem S., Kumari A., Gupta P., Sreelakshmi Ye., Sharma R. Tomato fruits show phenomic diversity but fruit developmental genes show low genomic diversity. PLoS ONE, 2016, 11(4): e0152907 CrossRef
  74. Quinet M., Angosto T., Yuste-Lisbona F.J., Blanchard-Gros R., Bigot S., Martinez J.-P., Lutts S. Tomato fruit development and metabolism. Frontiers in Plant Science, 2019, 10: 1554 CrossRef
  75. Liu S., Zhang Y., Feng Q., Qin L., Pan Ch., Lamin-Samu A.T., Gang L. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Science Report, 2018, 8: 2971 CrossRef

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)