PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2019.5.920eng

UDC: 633.1:581.14:577.21

Acknowledgements:
The work was performed according to the State task (priority area Х.10.4, program Х.10.4.150, projects Х.10.4.150)

 

EFFECTS OF DWARFING WHEAT (Triticum aestivum L.) AND RYE (Secale cereale L.) GENES IN SPRING TRITICALE SEGREGATING POPULATION AS STUDIED IN POT TRIALS

P.Yu. Kroupin1, 2, A.G. Chernook1, 2, G.I. Karlov1, 2, A.A. Solov’ev1,
A.D. Korshunova2, M.G. Divashuk1, 2

1All-Russian Research Institute of Agricultural Biotechnology, 42, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail pavelkroupin1985@gmail.com (✉ corresponding author), irbis-sibri@ya.ru, karlov@iab.ac.ru, a.soloviev70@gmail.com, divashuk@gmail.com;
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail korshunova.ad88@gmail.com

ORCID:
Kroupin P.Yu. orcid.org/0000-0001-6858-3941
Solov’ev A.A. orcid.org/0000-0003-4480-8776
Chernook A.G. orcid.org/0000-0002-8793-1742
Korshunova A.D. orcid.org/0000-0002-8651-8286
Karlov G.I. orcid.org/0000-0002-9016-103X
Divashuk M.G. orcid.org/0000-0001-6221-3659

Received April 25, 2018

 

The urgent problem of triticale lodging may be reliably overcome by introgression of dwarfing genes into triticale cultivars. Notable, both wheat and rye dwarfing genes can reduce the height of triticale plants. Therefore, a single contribution of various dwarfing genes and their additive effects in triticale which is an intergeneric hybrid still remain intriguing in fundamental aspects and important for breeding practice. In our study, rye dwarfing gene Ddw1 has been transferred into spring triticale. Then we have hybridized winter triticale cv. Avanguard (Ddw1 Ddw1 Rht-B1a Rht-B1a) with spring triticale cv. Solovei Kharkovskii (ddw1 ddw1 Rht-B1b Rht-B1b) and used F2 seeds to reveal the mechanism of inheritance of the studied dwarfing genes Ddw1 and Rht-B1b and to determine the effect of the dwarfing alleles on economically valuable traits in the segregating population of spring triticale. Under the greenhouse conditions, 273 plants of the spring type of the segregating population F2 were grown to individually estimate plant height, the number and length of internodes, spikelet length and number per spike, spike density, grain weight, grain number and 1000-grain weight per the main spike. Each plant was also genotyped by PCR using the markers of the Ddw1 and Rht-B1 allelic state. To investigate inheritance patterns, the dominant and additive effects of genes were calculated. The second task was achieved by comparing plants homozygous for wild-type alleles (ddw1 and Rht-B1a) and short-stem alleles (Ddw1 and Rht-B1b) with estimation of both independent effect of each genes and their interlocus interaction. Using statistical methods (Fisher F-criterion, Mann-Whitney U-test, and Spearman rank correlation coefficient ρ), we found the significance of the differences and associations between phenotypic traits and genotype. Our studies have shown that the effects of the Ddw1 and Rht-B1b are somewhat different from those in wheat. The Ddw1 statistically significant affects plant height (by reducing up to 40 %, p = 0.05), manifesting itself as a partially dominant allele. The Rht-B1b results in a decrease in the spring triticale plant height but less than the Ddw1 gene does (only up to 20 %, p = 0.05). Hence, the Rht-B1b allele is proven to be partially recessive. In the presence of gene Rht-B1b a kernel weight increases from 1.4 g to 1.7 g (by 21.4 %) due to higher spike density and fertility. The Ddw1 gene introgression leads to a 16.7 % decrease (p = 0.05) in the total grain weight per spike (from 1.8 g to 1.5 g) due to a 9.6 % decrease (p = 0.05) in the 1000-grain weight (from 45.7 g до 41.3 g). In general, the Ddw1 and Rht-B1b genes affect the studied traits as antagonists. In summary, a combination of two dwarfing genes, Ddw1 from rye and Rht-B1b from wheat, makes it possible to maximize yield of dwarf spring triticale plants and is promising for breeding.

Keywords: spring triticale, Rht-B1b, Ddw1, structural analysis, dwarfing genes, DNA markers, breeding.

 

REFERENCES

  1. FAOSTAT. Data. Available http://www.fao.org/faostat/en/#data. Accessed 20.04.2018.
  2. Goryanina T.A. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2017, 5(67): 42-44 (in Russ.). 
  3. McGoverin C.M., Snyders F., Muller N., Botes W., Fox G., Manley M. A review of triticale uses and the effect of growth environment on grain quality. Journal of the Science of Food and Agriculture, 2011, 91(7): 1155-1165 CrossRef
  4. Liu W., Leiser W.L., Maurer H.P., Li J., Weissmann S., Hahn V., Würschum T. Evaluation of genomic approaches for marker-based improvement of lodging tolerance in triticale. Plant Breeding, 2015, 134(4): 416-422 CrossRef
  5. Losert D., Maurer H.P., Marulanda J.J., Würschum T. Phenotypic and genotypic analyses of diversity and breeding progress in European triticale (½ Triticosecale Wittmack). Plant Breeding, 2017, 136(1): 18-27 CrossRef
  6. Navabi A., Iqbal M., Strenzke K., Spaner D. The relationship between lodging and plant height in a diverse wheat population. Canadian Journal of Plant Science, 2006, 86(3): 723-726 CrossRef
  7. Würschum T., Liu W., Busemeyer L., Tucker M., Reif J., Weissmann E., Hahn V., Ruckelshausen A., Maurer H. Mapping dynamic QTL for plant height in triticale. BMC Genetics, 2014, 15(1): 59 CrossRef
  8. Miedaner T., Hübner M., Korzun V., Schmiedchen B., Bauer E., Haseneyer G., Wilde P., Reif  J.C. Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics, 2012, 13(1): 706 CrossRef
  9. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat, 2013. Available https://shigen.nig.ac.jp/wheat/komu-gi/genes/macgene/2013/GeneSymbol.pdf. Accessed 20.04.2018.
  10. McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Xia X.C. Catalogue of gene symbols for wheat, 2017. Available https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf. Accessed 20.04.2018.
  11. Mo Y., Vanzetti L., Hale I., Spagnolo E., Guidobaldi F., Al-Oboudi J., Odle N., Pearce S., Helguera M., Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theoretical and Applied Genetics, 2018, 131(10): 2021-2035 CrossRef
  12. Jobson E., Martin J., Schneider T., Giroux M. The impact of the Rht-B1b, Rht-D1b, and Rht-8 wheat semi-dwarfing genes on flour milling, baking, and micronutrients. Cereal Chemistry, 2018, 95(6): 770-778 CrossRef
  13. Zhao K., Xiao J., Liu Y., Chen S., Yuan C., Cao A., You F., Yang D., An S., Wang H., Wang X. Rht23 (5Dq') likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theoretical and Applied Genetics, 2018, 131(9): 1825-1834 CrossRef
  14. Rebetzke G.J., Bonnett D.G., Ellis M.H. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Research, 2012, 127: 17-25 CrossRef
  15. Divashuk M., Vasilyev A., Bespalova L., Karlov G. Identity of the Rht-11 and Rht-B1e reduced plant height genes. Russian Journal of Genetics, 2012, 48(7): 761-763 CrossRef
  16. Divashuk M.G., Fesenko I.A., Karlov G.I., Bespalova L.A., Vasilyev A.V., Puzyrnaya O.Y. Reduced height genes and their importance in winter wheat cultivars grown in southern Russia. Euphytica, 2013, 190(1): 137-144 CrossRef
  17. Mahone G.S., Frisch M., Bauer E., Haseneyer G., Miedaner T., Falke K.C. Detection of donor effects in a rye introgression population with genome-wide prediction. Plant Breeding, 2015, 134(4): 406-415 CrossRef
  18. Alheit K., Busemeyer L., Liu W., Maurer H., Gowda M., Hahn V., Weissmann S., Ruckelshausen A., Reif J., Würschum T. Multiple-line cross QTL mapping for biomass yield and plant height in triticale (½ Triticosecale Wittmack). Theoretical and Applied Genetics, 2013, 127(1): 251-260 CrossRef
  19. Börner A., Plaschke J., Korzun V., Worland A. The relationships between the dwarfing genes of wheat and rye. Euphytica, 1996, 89(1): 69-75 CrossRef
  20. Kobylyanskii V.D. Materialy II Vavilovskoi mezhdunarodnoi konferentsii «Geneticheskie resursy kul'turnykh rastenii v XXI veke. Sostoyanie, problemy, perspektivy» [Proc. II Vavilov Int. Conf. «Genetic resources of cultivated plants in the XXI century. Status, problems, prospects»]. St. Petersburg, 2007: 476-477 (in Russ.). 
  21. Stojałowski S., Myskow B., Hanek M. Phenotypic effect and chromosomal localization of Ddw3, the dominant dwarfing gene in rye (Secale cereale L.). Euphytica, 2015, 201(1): 43-52 CrossRef
  22. Hackauf B., Goldfisch M., Musmann D., Melz G., Wehling P. Evaluation of the dominant dwarfing gene Ddw1 with respect to its use in hybrid rye breeding. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 2013, 63: 41-42.
  23. Kobylyanskii V.D., Solodukhina O.V. Trudy po prikladnoi botanike, genetike i selektsii, 2012, 169: 53-64 (in Russ.). 
  24. Wolski T., Gryka J. Semidwarf winter triticale. Triticale today and tomorrow. H. Guedes-Pinto, N. Darvey, V.P. Carnide (eds.). Kluwer Academic Publishers, Dordrecht Boston London, 1996: 581-588.
  25. Pojmaj M.S., Wolski T. Breeding strategies for improving lodging resistance in winter triticale in connection with heterosis. CIMMYT, 1991. Available http://agris.fao.org/agris-search/search.do?recordID=QY9200132. No date.
  26. Ittu G., Saulescu N.N., Ittu M., Mustatea P. Introduction of short straw genes in Romanian triticale germplasm. Romanian Agricultural Research, 2007, 24: 7-10.
  27. Banaszak Z. Breeding of triticale in DANKO. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 2010, 61: 65-68.
  28. Korshunova A.D., Divashuk M.G., Soloviev A.A., Karlov G.I. Analysis of wheat and rye semidwarfing gene distribution in spring hexaploid triticale (Triticosecale Wittm.) cultivars and breeding lines. Russian Journal of Genetics, 2015, 51(3): 272-277 CrossRef
  29. Korshunova A.D., Divashuk M.G., Karlov G.I., Solov'ev A.A. Izvestiya TSKHA, 2014, 6: 5-14 (in Russ.). 
  30. Bazhenov M.S., Divashuk M.G., Krupin P.Yu., Pylnev V.V., Karlov G.I. The effect of 2D (2R) substitution on the agronomical traits of winter triticale in early generations of two connected crosses. Cereal Research Communications, 2015, 43(3): 504-514 CrossRef
  31. Thomas S.G. Novel Rht-1 dwarfing genes: tools for wheat breeding and dissecting the function of DELLA proteins. Journal of Experimental Botany, 2017, 68(3): 354-358 CrossRef
  32. Bernatzky R., Tanksley S.D. Genetics of actin-related sequences in tomato. Theoretical and Applied Genetics, 1986, 72(3): 314-321 CrossRef
  33. Ellis M., Spielmeyer W., Gale K., Rebetzke G., Richards R. “Perfect” markers for the Rht-B1b and RhtD1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002, 105: 1038-1042 CrossRef
  34. Tenhola-Roininen T., Tanhuanpää P. Tagging the dwarfing gene Ddw1 in a rye population derived from doubled haploid parents. Euphytica, 2010, 172(3): 303-312 CrossRef
  35. Smiryaev A.V., Kil'chevskii A.V. Genetika populyatsii i kolichestvennykh priznakov [Genetics of populations and quantitative traits]. Moscow, 2007 (in Russ.). 
  36. Kovtunenko V.Ya., Timofeev V.B., Dudka L.F., Panchenko V.V. Selektsіya і nasіnnitstvo, 2008, 96: 89-97 (in Russ.). 
  37. Pinkal' A.V. Omskii nauchnyi vestnik, 2012, 2 (114): 167-172 (in Russ.). 
  38. Gol'dvarg B.A., Gritsienko V.G., Boraeva L.N. Sbornik nauchnykh trudov Vserossiiskogo nauchno-issledovatel'skogo instituta ovtsevodstva i kozovodstva, 2007, 2(2-2): 124-128 (in Russ.). 
  39. Innovatsionnye sorta i tekhnologii vozdelyvaniya yarovogo tritikale: kollektivnaya monografiya [Innovative varieties and technologies for spring triticale cultivation: a collective monograph]. Vladimir, 2017 (in Russ.). 
  40. Gale M.D., Salter A.M., Angus F.J. The effect of dwarfing genes on the expression of heterosis for grain yield in F1 hybrid wheat. In: Current options for cereal improvement. M. Maluszynski (ed.). Kluwer Academic, Dordrecht, 1989: 49-62.
  41. Keyes G., Sorrells M. Rht1 and Rht2 semidwarf genes effect on hybrid vigor and agronomic traits of wheat. Crop Science, 1989, 29: 1442-1447 CrossRef
  42. Flintham E., Borner A., Worland A., Gale M. Optimizing wheat grain yield effects of Rht (gibberellin-insensitive) dwarfing genes. The Journal of Agricultural Science, 1997, 128: 11-25 CrossRef
  43. Flintham J.E., Gale M.D. Plant height and yield components of inbred isogenic and F1 hybrid dwarf wheat. Journal of Applied Genetics, 1998, 39: 73-83.
  44. Gale M.D., Youssefian S. Dwarfing genes in wheat. In: Progress in plant breeding. G.E. Russel (ed.). Butterworths and Co., London, 1985, V. 1: 1-35.
  45. Li X., Lan S., Liu Y., Gale M., Worland T. Effects of different Rht-B1b, Rht-D1b and Rht-B1c dwarfing genes on agronomic characteristics in wheat. Cereal Research Communications, 2006, 34(2-3): 919-924 CrossRef
  46. Chebotar G., Motsnyy I., Chebotar S., Sivolap Y. Effects of dwarfing genes on the genetic background of wheat varieties in Southern Ukraine. Cytology and Genetics, 2012, 46(6): 366-372 CrossRef
  47. Hu Y.G. Utilization of dwarfing genes to improve drought tolerance and yield potential in wheat, 2012. Available http://www.ub.edu/optichinagriculture/data/uploads/workshop2/presentations/hu-yin-gang-nwaandfu.pdf. Accessed 20.04.2018.
  48. Miralles D.J., Katz S.D., Colloca A., Slafer G.A. Floret development in near isogenic wheat lines differing in plant height. Field Crops Research, 1998, 59(1): 21-30 CrossRef
  49. Miralles D.J., Slafer G.A. Individual grain weight responses to genetic reduction in culm length in wheat as affected by source-sink manipulations. Field Crops Research, 1995, 43 (2-3): 55-66 CrossRef

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)