doi: 10.15389/agrobiology.2018.5.1045eng

UDC 632.7:632.951:57.084.1

 

SPECIFIC FEATURES OF DEVELOPMENT OF SPIDER MITE
Tetranychus urticae Koch
RESISTANCE TO ACARICIDE FLORAMITE®
(BIFENAZATE)

I.N. Yakovleva, Yu.I. Meshkov, N.N. Salobukina, V.V. Mikhailova,
T.A. Bereshchuk

All-Russian Research Institute of Phytopathology, Federal Agency for Scientific Organizations, 5, ul. Institute, pos. Bol’shie Vyazemy, Odintsovskii Region, Moscow Province, 143050 Russia, e-mail innayakovleva@mail.ru (✉ corresponding author), yimeshkov@rambler.ru, Nsalobukina7liza0904@mail.ru, abramova1984@mail.ru

ORCID:
Yakovleva I.N. orcid.org/0000-0003-4712-2315
Meshkov Yu.I. orcid.org/0000-0001-5034-2533
The authors declare no conflict of interests

Received May 15, 2016

 

Currently, chemical method is deemed the most effective for plant protection against two-spotted spider mite Tetranychus urticae Koch. However, pest resistance when using chemicals for a long time remains among the main challenges. Rather short list of insectoacaricides approved for greenhouse farming in Russia aggravates the problem, since effectiveness of pest resistance control via rotation of pesticides decreases. One more thing is imported propagating material of ornamental crops infested by spider mites resistant to commonly used pesticides. Bifenazate is being successfully applied in different countries for phytophagous mite control. This work is the first rationale for the use of a novel acaricide Floramite® (bifenazate, 240 g/l) against spider mites in Russia. Our objective was to estimate the rate of Floramite®-resistance formation and cross-resistance to most used insectoacaricides in laboratory spider mite lines which are highly resistant to commonly used insectoacaricides. These lines were S-vniif (no contact to pesticides), S-floramite (derived from S-vniif to study resistance to Floramite® in the course of selection), R-vertimec (resistant to abamectin, R-fitoverm (resistant to aversectin C), R-talstar (resistabt to bifentrin), R-actellik (resistant to pirimiphos methyl), and R-BTB (resistant to bitoxibacilline biologicals based on Bacillus thuringiensis var. thuringiensis). The resistance ratios (RR50 and RR95) were calculated from the ratio of average lethal concentrations of LC50/LC50 and LC95/LC95 for the selected line and susceptible parental line. The ratio of 10-fold (RR50 = 10×) and higher values stand for true resistance, those less than 10-fold value stand for tolerant. We studied formation of Floramite® resistance for 3.5 years. As per our findings, the mites show more than 5000-fold resistance to Floramite® after 53 treatments with this acaricide during 120 generations (for the majority of the most known insectoacaricides maximum resistance appears during 17-25 generations). No cross-resistance to floramite is detected in the lab lines of mites resistant to bitoxybacillin (B. thuringiensis) and Vertimec® (abamectin), with 1.2-1.8-fold RR50, respectively. The mite lines resistant to fitoverm, Vertimec® and Actellic® show tolerance to Floramite® at RR50 of 2.8×, 2.9× and 3.6×, respectively. Thus, due to slow growth of T. urticae resistance to Floramite® and its potential in eradication of mite populations resistant to different pesticides, Floramite® should be approved in domestic protocols for greenhouse farming.

Keywords: two-spotted spider mite, Tetranychus urticae, Floramite®, bifenazat, resistance, cross-resistance, insectoacaricides, greenhouses.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Cranham J.E., Helle W. Pesticide resistance in Tetranychidae. In: Spider mites: their biology, natural enemies and control. W. Helle, M.W. Sabelis (eds.). Netherlands, Amsterdam, Elsevier, 1985: 405-421.
  2. Zil'bermints I.V. V knige: Rezistentnost' vreditelei sel'skokhozyaistvennykh kul'tur i ee preodolenie [In: Pests of crops: resistance and overcoming]. Moscow, 1991: 65-87 (in Russ.).
  3. Ramasubramanian T., Ramaraju K., Regupathy A. Acaricide resistance in Tetranychus urticae Koch (Acari: Tetranychidae) — global scenario. Journal of Entomology, 2005, 2(1): 33-39 CrossRef
  4. Yakovleva I.N., Meshkov Yu.I., Salobukina N.N., Gorban' T.N. Materialy III Vserossiiskogo s"ezda po zashchite rastenii «Fitosanitarnaya optimizatsiya agroekosistem» [Proc. III All-Russian Congress on plant protection “Phytosanitary optimization of agroecosystems”]. St. Petersburg, 2013, Vol. III: 54-57 (in Russ.).
  5. Khalighi M., Tirry L., Van Leeuwen T. Cross-resistance risk of the novel complex II inhibitors cyenopyrafen and cyflumetofen in resistant strains of the two-spotted spider mite Tetranychus urticae. Pest Manag. Sci., 2014, 70(3): 365-368 CrossRef
  6. Stocco R.S.M., Sato M.E., Santos T.L. Stability and fitness costs associated with etoxazole resistance in Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol., 2016, 69(4): 413-425 CrossRef
  7. Team 2015/16. 50th IRAC International Meeting. Dublin, April 5-8th, 2016. Available http://www.irac-online.org/documents/resistance-database-team-update-2016/?ext=pdf. No date.
  8. Meshkov Yu.I., Yakovleva I.N. Teplitsy Rossii, 2009, 3: 33-37 (in Russ.).
  9. Meshkov Yu.I., Yakovleva I.N., Salobukina N.N., Gorban' T.N. Materialy III Vserossiiskogo s"ezda po zashchite rastenii «Fitosanitarnaya optimizatsiya agroekosistem» [Proc. III All-Russian Congress on plant protection “Phytosanitary optimization of agroecosystems”]. St. Petersburg, 2013, Vol. III: 36-41 (in Russ.).
  10. Sukhoruchenko G.I. Materialy 9-go soveshchaniya «Sovremennoe sostoyanie problemy rezistentnosti vreditelei, vozbuditelei boleznei i sornyakov k pestitsidam v Rossii i sopredel'nykh stranakh na rubezhe XXI veka» [Proc. 9th meeting “Relevant problems of resistance of pests, pathogens and weeds to pesticides in Russia and neighboring countries at the turn of the XXI century”]. St. Petersburg, 2000: 9-11 (in Russ.).
  11. James G.J. Selectivity of the acaricide, bifenazate, andaphicide, pymetrozine, to spider mite predators in Washinghton hops. Int. J. Acarol., 2002, 28: 175-179.
  12. Van Leeuwen T., Van Pottelberge S., Tirry L. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manag. Sci., 2005, 61(5): 499-507 CrossRef
  13. Price J.F., Nagle C.A. Response of twospotted spider mite populations to programs of abamectin, bifenazate, hexythiazox, spiromesifen, and essential oil of Chenopodium ambrosioides miticides in Florida strawberry crops. Acta Hortic., 2009, 842: 331-334 CrossRef
  14. Vost?el J. Bifenazate. A prospective acaricide for spider mite (Tetranychus urticae Koch). Control in Czech Hops. Plant Protect. Sci., 2010, 46(3): 135-138.
  15. Ochiai N., Mizuno M., Miyake N.T., Dekeyser M., Canlas L.J., Takeda M. Toxicity of bifena-zate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus. Exp. Appl. Acarol., 2007, 43(3): 181-197 CrossRef
  16. Tang X.-f., Zhang Y.-j., Wu Q.-j., Xie W., Wang S. Stage-specific expression of resistance to different acaricides in four field populations of Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 2014, 107(5): 1900-1907 CrossRef
  17. Vassiliou V.A., Kitsis P. Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus. J. Econ. Entomol., 2013, 106(4): 1848-1854 CrossRef
  18. Al-Antary T.M., Al-Lala M.R.K., Abdel-Wali M.I. Residual effect of six acaricides on the two spotted spider mite (Tetranychus urticae Koch) females on cucumber under plastic houses conditions in three upper lands regions in Jordan. Advances in Environmental Biology, 2012, 6(11): 2992-2997.
  19. Lee Y.-S., Song M.-H., Ahn K.-S., Lee K.-Y., Kim J.-W., Kim G.-H. Monitoring of acaricide re-sistance in two-spotted spider mite (Tetranychus urticae) populations from rose greenhouses in Korea. J. Asia-Pac. Entomol., 2003, 6(1): 91-96 CrossRef
  20. Yu J.-S., Seo D.-K., Kim E.-H., Han J.-B., Ahn K.-S., Kim G.-H. Inheritance and cross re-sistance of bifenazate resistance in twospotted spider mite, Tetranychus urticae. Korean Journal of Applied Entomology, 2005, 44(2): 151-156.
  21. Van Leeuwen T., Tirry L., Nauen R. Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action consid-erations. Insect Biochem. Molec., 2006, 36(11): 869-877 CrossRef
  22. Van Leeuwen T., Stillatus V., Tirry L. Genetic analysis and cross-resistance spectrum of a labor-atory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Exp. Appl. Acarol., 2004, 32(4): 249-261 CrossRef
  23. Van Leeuwen T., Van Pottelberge S., Nauen R., Tirry L. Organophosphate insecticides and aca-ricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Manag. Sci., 2007, 63(12): 1172-1177 CrossRef
  24. Van Nieuwenhuyse P., Van Leeuwen T., Khajehali J., Vanholme B., Tirry L. Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag. Sci., 2009, 65(4): 404-412 CrossRef
  25. Opredelenie rezistentnosti vreditelei sel'skokhozyaistvennykh kul'tur i zoofagov k pestitsidam. Metodicheskie ukazaniya [Assessment of resistance of pests and zoophages to pesticides — à guidelines]. Moscow, 1990: 1-79 (in Russ.).
  26. Monitoring rezistentnosti k pestitsidam v populyatsiyakh vrednykh chlenistonogikh. Metodicheskie ukazaniya [Monitoring of pesticide resistance in populations of harmful arthropods — a guidelines]. St. Petersburg, 2004: 1-129 (in Russ.).
  27. Tirello P., Pozzebon A., Cassanelli S., Van Leeuwen T., Duso C. Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Exp. Appl. Acarol., 2012, 57(1): 53-64 CrossRef
  28. Yakovleva I.N., Meshkov Y.I., Kupriyanov M.A. In: 50 years on guard of the food safety of the country. Jubilee collection of works, Institute of Phytopathology RAAS. B. Vyazemy, 2008: 531-541 (in Russ.).
  29. Meshkov Y.I., Yakovleva I.N., Glinushkin A.P., Kruglyak E.B., Drinyaev V.A. Comparative aspects of the formation of resistant populations of the twospotted spider mite Tetranychus urticae Koch (Acariformes, Tetranychidae) to two groups of avermectin preparations. Int. J. Pharm. Res. Allied Sci., 2017, 6(4): 116-122.
  30. Sato M.E., da Silva M.Z., Raga A., de Souza Filho M.F. Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotrop. Entomol., 2005, 34 (6): 991-998.
  31. Nicastro R.L., Sato M.E., Da Silva M.Z. Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Exp. Appl. Acarol., 2010, 50(3): 231-241.
  32. Lasota J.A., Dybas R.A. Avermectins, a novel class of compound: implications for use in arthropod pest control. Annu. Rev. Entomol., 1991, 36: 91-117 CrossRef
  33. Campos F., Krupa D.A., Dybas R.A. Susceptibility of population of two-spotted spider mites (Acari: Tetranychidae) from Florida, Holland, and the Canary Islands to abamectin and characterization of abamectin resistance. J. Econ. Entomol., 1996, 89(3): 594-601 CrossRef

back