doi: 10.15389/agrobiology.2018.5.916eng

UDC 633.111:631.524.84:58.056

Acknowledgements:
The authors thank for Triticum aestivum/T. timopheevii lines by courtesy of E.B. Budashkina (FRC ICG SB RAS, Novosibirsk, Russia)
Supported financially by Belarusian Republican Foundation for Fundamental Research (grant ¹ B18R-028), Russian Foundation for Basic Research (grant ¹ 18-516-00001), and FRC ICG SB RAS budget project ¹ 0324-2018-0018

 

MANIFESTATION OF PRODUCTIVITY TRAITS IN Triticum aestivum/T. timopheevii INTROGRESSION LINES IN DIFFERENT ENVIRONMENTAL CONDITIONS

S.I. Vakula1, O.A. Orlovskaya1, L.V. Khotyleva1, I.N. Leonova2

1Institute of Genetic and Cytology of National Academy of Science of Belarus, 27, ul. Akademicheskaya, Minsk, 220072 Republic of Belarus, e-mail svettera@yandex.ru (✉ corresponding author), O.Orlovskata@igc.by, L.Khotyleva@igc.by;
2Federal Research Center Institute of Cytology and Genetics SB RAS, Federal Agency for Scientific Organizations, 10, prosp. Akademika Lavrent’eva, Novosibirsk, 630090 Russia, e-mail leonova@bionet.nsc.ru

ORCID:
Vakula S.I. orcid.org/0000-0002-2242-7107
Khotyleva L.V. orcid.org/0000-0003-0295-5022
Orlovskaya O.A. orcid.org/0000-0002-1187-1317
Leonova I.N. orcid.org/0000-0002-6516-0545
The authors declare no conflict of interests

Received July 17, 2018

 

Common wheat lines containing introgression of alien genetic material are an important source and donors of pathogen resistance genes. However, for the effective involvement of lines in breeding, information is needed on their ecological plasticity and productivity in different environments. This paper is the first report on estimates of adaptive responses, stability and breeding value of common wheat lines with alien substitutions and translocations in geographically distant regions. The aim of our investigation was comparative analysis of manifestation of agronomic important traits of common wheat introgression lines containing alien genetic material, when grown in different eco-geographical zones, the Western Siberia (the Russian Federation) and Eastern Europe (the Republic of Belarus). Twenty one fungal disease-resistant T. aestivum/T. timopheevii introgression lines (BC1F22-24, 2n = 42) from crossing of five common wheat varieties (Saratovskaya 29, Skala, Irtyshanka 10, Tcelinnaya 20 and Novosibirskaya 67) with tetraploid wheat T. timopheevii var. viticulosum were tested. Field evaluation of the lines and parental wheat cultivars was carried out in 2015 in the conditions of the West Siberian (Novosibirsk Region) and Eastern European (Minsk, Republic of Belarus) agro-climatic zones. The field experiment was arranged in two replicates on 1 m plots, 40-60 grains per row and 20 cm distance between rows, according to the systematic method. The evaluation of the tiller number, plant height, ear length, spikelet number, ear grain number, ear grain weight and 1000-grain weight were carried out according to the methodological recommendations of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) (for 20-25 randomly selected plants of each line). Our results show conserved ranks of tiller number, ear length, number of spikelets per ear, and ear grain number in five groups of introgression hybrids in two agro-ecological regions, as influenced by growing conditions, while hierarchical structures for plant height, ear grain weight and 1000-grain weight dissociate due to effect of the genotype × environment interaction. In the West Siberian region, hybrid wheat lines, as a rule, overcome parental forms on productivity traits and are below them in height. In the Eastern European region, soft wheat varieties involved in crossings are inferior to the introgression lines created on their basis only on tiller number. The exception was cultivar Scala, which in the conditions of the Republic of Belarus was characterized as medium-sized with high spike-lengths and the number of spikelets per ear, but with low values of the ear grain number and ear grain weight. Approximation of the productivity of introgression lines and their parents by PCA also indicates a significant influence of environmental conditions. Observations corresponding to the Western Siberian region and Belarus constitute two relatively distant dispersion clouds, differing in the degree of overlapping of the areas corresponding to different cross combinations and their positions relative to the parental forms in the PCA space. According to the results of the research, introgression lines created on the base of varieties Saratovskaya 29, Skala and Irtyshanka 10 are recommended as sources of resistance genes without reducing productivity of recipient varieties.

Keywords: Triticum aestivum, common wheat, tetraploid wheat T. timopheevii, introgression lines, productivity, eco-genetic experiment.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Zhuchenko A.A. Resursnyi potentsial proizvodstva zerna v Rossii (teoriya i praktika) [Grain production resources in Russia —theoretical aspects and practice]. Moscow, 2004 (in Russ.).
  2. Vavilov N.I. Izbrannye Trudy [Selected works]. Moscow, 1996 (in Russ.).
  3. Sadras V.O., Reynolds M.P., de la Vega A.J., Petrie P.R., Robinson R. Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine. Field Crop. Res., 2009, 110(3): 242-250 CrossRef
  4. Krasnova Yu.S., Shamanin V.P., Petukhovskii S.L., Kirilyuk L.M. Sovremennye problemy nauki i obrazovaniya, 2014, 6. Available http://www.science-education.ru/120-16182. No date (in Russ.).
  5. Amelin A.V., Azareva E.F. Zemledelie, 2002, 1: 20 (in Russ.).
  6. Mameev V.V., Nikiforov V.M. Vestnik Kurskoi gosudarstvennoi sel'skokhozyaistvennoi akademii, 2015, 7: 125-129 (in Russ.).
  7. Sadras V.O., Rebetzke J.G. Plasticity of wheat grain yield is associated with plasticity of ear number. Crop Pasture Sci., 2013, 64(30): 234-243 CrossRef
  8. Kovalenko E.V., Zhemchuzhina A.I., Kiseleva M.I., Kolomiets T.M., Shcherbik A.A. Zashchita i karantin rastenii, 2012, 9: 19-22 (in Russ.).
  9. Krupin P.Yu., Divashuk M.G., Belov V.N., Zhemchuzhina A.I., Kovalenko E.D., Upelniek V.P., Karlov G.I. Investigation of intermediary wheat-agropyron hybrids on resistance to leaf rust. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 1: 68-73 CrossRef
  10. Sagendykova A.T., Plotnikova L.YA., Kuz'mina S.P. Agrarnaya Rossiya, 2016, 9: 5-13 (in Russ.)
  11. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat. 12th Int. Wheat Genetics Symposium, 2013 Yokohama, Japan. Available http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp. No date (in Russ.).
  12. McIntosh R.A. Wheat rusts: an atlas of resistance genes. CSIRO Publishing, Sydney, 1995.
  13. Zhang W., Lukaszewskii A.J., Soria M.A., Goyal S., Dubcovsky J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet., 2005, 111(3): 573-582 CrossRef
  14. Leonova I.N., Budashkina E.B., Kalinina N.P., Röder M.S., Börner A., Salina E.A. Triticum aestivum ½ Triticum timopheevii introgression lines as a source of pathogen resistance genes. Czech J. Genet. Plant Breed., 2011, 47: S49-S55 CrossRef
  15. Leonova I.N., Kalinina N.P., Budashkina E.B., Röder M.S. Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum ½ Triticum timopheevii introgression lines. Russ. J. Genet., 2008, 44(12): 1431 CrossRef
  16. Timonova E.M., Leonova I.N., Röder M.S., Salina E.A. Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol. Breeding, 2013, 31(1): 123-136 CrossRef
  17. Merezhko A.F. Popolnenie, sokhranenie v zhivom vide i izuchenie mirovoi kollektsii pshenitsy, egilopsa i triticale [World collection of wheat, aegilops, and triticale — accession, maintenance and study]. St. Petersburg, 1999 (in Russ.).
  18. Karpuk V.V., Sidorova S.G. Rastenievodstvo [Crop production]. Minsk, 2011 (in Russ.).
  19. Sarembaud J., Pinto R., Rutledge D.N., Feinberg M. Application of the ANOV-PCA method to stability studies of reference materials. Anal. Chim Acta, 2007, 604(2): 147-154 CrossRef
  20. Przulj N., Mirosavljevic M., Canak P., Zoric M., Bocanski J. Evaluation of spring barley performance by biplot analysis. Cereal Res. Commun., 2015, 43(4): 692-703 CrossRef
  21. Osipov Yu.F., Ivanitskii Ya.V. Nauchnyi zhurnal KubGAU, 2011, 68(4). Available http://www.ej.kubagro.ru/2011/04/pdf/15.pdf. No date (in Russ.).
  22. Syukov V.V., Gulaeva N.I. Dostizheniya nauki i tekhniki APK,2015, 29(8): 55-57 (in Russ.).
  23. Zhang D., Zhou Y., Zhao X., Lv L., Zhang C., Li J., Sun G., Li S., Song C. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × Hexaploid Wheat) as donor. Front. Plant Sci., 2018, 9: 1113 CrossRef
  24. Wang X., Pang Y., Zhang J., Zhang Q., Tao Y., Feng B., Zheng T., Xu J., Li Z. Genetic background effects on QTL and QTL × environmental interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. The Crop Journal, 2014, 2(6): 345-357 CrossRef
  25. Quarrie S.A., Quarrie S.P., Radosevic R., Rancic D., Kaminska A., Barnes J.D., Leverington M., Ceoloni C., Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J. Exp. Bot., 2006, 57(11): 2627-2637 CrossRef
  26. Peltonen-Sainio P., Jauhiainen L., Sadras V.O. Phenotipic plasticity of yield and agronomic traits in cereals and rapeseed at high latitudes. Field Crop Research, 2011, 124(2): 261-269 CrossRef
  27. Nikotra A.B., Atkin O.K., Bonser S.P., Davidson A.M., Finnegan E.J., Mathesius U., Poot P., Purugganan M.D., Richards C.L., Valladares F., van Kleunen M. Plant phenotypic plasticity in a changing climate. Trends Plant Sci., 2010, 15(12): 685-692 CrossRef
  28. Leonova I.N., Budashkina E.B. The study of agronomical traits determining the productivity of the Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases. Russian Journal of Genetics: Applied Research, 2017, 7(3): 299-307 CrossRef
  29. Balakrishnan D., Subrahmanyam D., Badri J., Raju A.K., Rao Y.V., Beerelli K., Mesapogu S., Surapaneni M., Ponnuswamy R., Padmavathi G., Babu V.R., Neelamraju S. Genotype × environment interactions of yield traits in backcross introgression lines derived from Oryza sativa cv. Swarna/Oryza nivara. Front. Plant Sci., 2016, 7: 1530 CrossRef
  30. Hanamaratti N.G., Salimath P.M., Vijayakumar C.H.M., Ravikumar R.L., Kajjidoni S.T. Genotype × environment interaction of near isogenic introgression lines (NIILs) under drought stress and non-stress environments in upland rice (Oryza sativa L.). Indian Society of Genetics & Plant Breeding, 2010, 70(3): 222-228.
  31. Jafarzadeh J., Bonnett D., Jannink J.-L., Akdemir D., Dreisigacker S., Sorrells M.E. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE, 2016, 11(9): e0162860 CrossRef

 

back