doi: 10.15389/agrobiology.2018.5.881eng

UDC 631.52:581.1:577.2

Acknowledgements:
Supported financially by the Russian Science Foundation (grant ¹ 15-14-30008)

 

CELLULAR AND MOLECULAR MECHANISMS CONTROLLING
AUTOPHAGY: A PERSPECTIVE TO IMPROVE PLANT STRESS
RESISTANCE AND CROP PRODUCTIVITY (review)

C.K. Rabadanova1, E.V. Tyutereva1, V.S. Mackievic2, V.V. Demidchik2, O.V. Voitsekhovskaja1

1Komarov Botanical Institute RAS, Federal Agency for Scientific Organizations, 2, ul. Professora Popova, St. Petersburg, 197376 Russia, e-mail CRabadanova@binran.ru (✉ corresponding author), ETutereva@binran.ru, ovoitse@binran.ru;
2Belarusian State University, 4, pr. Nezavisimosti, Minsk, 220030 Republic of Belarus, e-mail v.mackievic@gmail.com, dzemidchyk@bsu.by

ORCID:
Rabadanova C.K. orcid.org/0000-0001-6342-8117
Demidchik V.V. orcid.org/0000-0003-3765-8386
Tyutereva E.V. orcid.org/0000-0002-6727-6656
Voitsekhovskaja O.V. orcid.org/0000-0003-0966-1270
Mackievic V.S. orcid.org/0000-0002-5116-0157
The authors declare no conflict of interests

Received November 1, 2017

 

Under stress conditions, crops cannot reach the maximal level of productivity. Moreover, stress very often leads to plant death. Various stress factors limit the development and success of agricultural praxis. Under stress conditions, plants generate multicomponent metabolic, physiological and genetic responses which help them to adapt to suboptimal environment. At the level of cells, recent research has demonstrated that part of cellular content can be ‘eaten’ by the cell upon stress, producing energy and metabolites for survival. This process is known as autophagy (J.H. Hurley et al., 2017). Apart from this, some cells can die in the course of so-called programmed cell death (PCD), to provide better conditions for survival of other cells under stress (W.G. van Doorn et al., 2011). Both these processes are highly conservative in the evolution of eukaryotic organisms; they are very important for plant stress response and survival in suboptimal environment. Both autophagy and PCD are being intensively studied in yeast and animals since 1960ies. In plants, studies of autophagy and PCD began rather recently, and it should be kept in mind that these processes in plants bear several important features, which distinguish them from similar processes in heterotrophic eukaryotes. These features are related to the peculiar structures of plant cells. Nowadays, the problem of crop resistance to drought, salinity and extreme temperatures has become especially acute in a number of regions. Therefore, research on stress-induced autophagy is of special interest, as this process is most probably a universal component of the stress response to the abovementioned factors (V. Demidchik et al., 2017; M.E. Pérez-Pérez et al., 2017). Unraveling the mechanisms regulating the stress-induced autophagy and PCD may provide a key to genetic and chemical control of plants stress resistance, life cycle and productivity. Constitutive (i.e. not induced by stress) autophagy is an important mechanism of renewal of defect cell components; in plants, enhancement of autophagic flux by overexpression of the genes encoding autophagy-related proteins leads to an increase in stress resistance and to delayed senescence. In course of plant development, many types of plant cells undergo autophagy followed by PCD at the terminal stage of differentiation. In particular, autophagy and PCD are indispensable for seed germination, formation of vascular system and development of generative organs. Autophagy also participates in the regulation of leaf and petal senescence. So-called ‘nocturnal’ autophagy takes part in the degradation of transient leaf starch and sustains the assimilate transport to economically important plant organs such as fruit, tubers and storage roots. Thus, autophagy as a process directly affecting stress resistance, senescence and translocation of water and assimilates, represents a potentially very important target for regulation of plant functions, which thus far has not been used for generation of new crop varieties or in other applications in agriculture. The review discusses the structural types of autophagy (S. Reumann et al., 2010), molecular pathways of autophagy regulation (F. Reggiori et al., 2013) and cellular mechanisms of assembly of autophagic machinery, focusing on their potential use in agricultural technologies (Y.-Y. Chang et al., 2009; S. Han et al., 2015), first of all, to counterpart the deleterious effects of abiotic stress factors.

Keywords: autophagy, potassium, programmed cell death, senescence, stress, assimilate transport, crop yield.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Hurley J.H., Young L.N. Mechanisms of autophagy initiation. Annu. Rev. Biochem., 2017, 86: 225-244 CrossRef
  2. Klionsky D.J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci., 2005, 118: 7-18 CrossRef
  3. Reumann S., Voitsekhovskaja O., Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma, 2010, 247(3-4): 233-256 CrossRef
  4. van Doorn W.G., Beers E.P., Dang J.L., Franklin-Tong V.E., Gallois P., Hara-Nishimura I., Jones A.M., Kawai-Yamada M., Lam E., Mundy J., Mur L.A.J., Petersen M., Smertenko A., Taliansky M., Van Breusegem F., Wolpert T., Woltering E., Zhivotovsky B., Bozhkov P.V. Morphological classification of plant cell deaths. Cell Death Differ., 2011, 18(8): 1241-1246 CrossRef
  5. Lam E. Controlled cell death, plant survival and development. Nat. Rev. Mol. Cell Biol., 2004, 5(4): 305-315 CrossRef
  6. Samuilov V.D., Oleskin A.V., Lagunova E.M. Biokhimiya, 2000, 8: 1029-1046 (in Russ.).
  7. Liu Y., Bassham D.C. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol., 2012, 63: 215-237 CrossRef
  8. van Doorn W.G., Woltering E.J. Many ways to exit? Cell death categories in plants. Trends Plant Sci., 2005, 10(3): 117-122 CrossRef
  9. Xiong Y., Sheen J. Rapamycine and glucose-target of rapamycine (TOR) protein signaling in plants. J. Biol. Chem., 2012, 287: 2836-2842 CrossRef
  10. Aubert S., Gout E., Bligny R., Marty-Mazars D., Barrieu F., Alabouvette J., Marty F., Douce R. Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J. Cell Biol., 1996, 133(6): 1251-1263 CrossRef
  11. Moriyasu Y., Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation Plant Physiol., 1996, 111(4): 1233-1241 CrossRef
  12. Thompson A.R., Vierstra R.D. Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol., 2005, 8: 165-173 CrossRef
  13. Voitsekhovskaja O.V., Schiermeyer A., Reumann S. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells. Front. Plant Sci., 2014, 18(5): article 629 CrossRef
  14. Toyooka K., Okamoto T., Minamikawa T. Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J. Cell Biol., 2001, 154: 973-982 CrossRef
  15. Guiboileau A., Sormani R., Meyer C., Masclaux-Daubresse C. Senescence and death of plant organs: nutrient recycling and developmental regulation. C. R. Biol., 2010, 333(4): 382-391 CrossRef
  16. Yoshimoto K., Jikumaru Y., Kamiya Y., Kusano M., Consonni Ch., Panstruga R., Ohsumi Y., Shirasua K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. The Plant Cell, 2009, 21: 2914-2927 CrossRef
  17. Wang Y., Yu B., Zhao J., Guo J., Li Y., Han S., Huang L., Du Y., Hong Y., Tang D., Liu Y. Autophagy contributes to leaf starch degradation. The Plant Cell, 2013, 25: 1383-1399 CrossRef
  18. Demidchik V., Tyutereva E.V., Voitsekhovskaja O.V. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. Funct. Plant Biol., 2017, 45(1): 28-46 CrossRef
  19. Pérez-Pérez M.E., Couso I., Domínguez-González M., Lemaire S.D., Crespo J.L. Redox control of autophagy in photosynthetic organisms. In: Progress in botany. Vol. 79. F. Cánovas, U. Lüttge, R. Matyssek (eds.). Springer, Cham, 2017 CrossRef
  20. Zhou J., Yu J.Q., Chen Z. The perplexing role of autophagy in plant innate immune responses Mol. Plant Pathol., 2014, 15(6): 637-645 CrossRef
  21. Minibayeva F., Ponomareva A., Dmitrieva S., Ryabovol V. Oxidative stress-induced autophagy in plants: the role of mitochondria. Plant Physiol. Bioch., 2012, 59: 11-19 CrossRef
  22. Ishida H., Wada S. Autophagy of whole and partial chloroplasts in individually darkened leaves: a unique system in plants? Autophagy, 2009, 5: 736-737 CrossRef
  23. Shibata M., Oikawa K., Yoshimoto K., Kondo M., Mano S., Yamada K., Hayashi M., Sakamoto W., Ohsumi Y., Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. The Plant Cell, 2013, 25: 4967-4983 CrossRef
  24. Niki T., Saito S., Gladish D.K. Granular bodies in root primary meristem cells of Zea mays L. var. Cuscoensis K. (Poaceae) that enter young vacuoles by invagination: a novel ribophagy mechanism. Protoplasma, 2014, 251(5): 1141-1149 CrossRef
  25. Reggiori F., Klionsky D.J. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 2013, 194(2): 341-361 CrossRef
  26. Kovaleva O.V., Shitova M.S., Zborovskaya I.B. Klinicheskaya onkogematologiya, 2015, 2(2): 103-113 (in Russ.).
  27. Bassham D.C. Plant autophagy — more than a starvation response. Curr. Opin. Plant Biol., 2007, 10(6): 587-593 CrossRef
  28. van der Wilden W., Herman E.M., Chrispeels M.J. Protein bodies of mung bean cotyledons as autophagic organelles. PNAS USA, 1980, 77(1): 428-432.
  29. Yamasaki A., Noda N.N. Structural biology of the Cvt pathway. J. Mol. Biol., 2017, 429(4): 531-542 CrossRef
  30. Kim S.H., Kwon C., Lee J.H., Chung T. Genes for plant autophagy: functions and interactions. Mol. Cells, 2012, 34(5): 413-423 CrossRef
  31. Yan Q., Wang J., Fu Z.Q., Chen W. Endocytosis of AtRGS1 is regulated by the autophagy pathway after D-glucose stimulation. Front. Plant Sci., 2017, 8: 1229 CrossRef
  32. Ryabovol V.V., Minibayeva F.V. Molecular mechanisms of autophagy in plants: role of ATG8 proteins in formation and functioning of autophagosomes. Biochemistry (Moscow), 2016, 81(4): 348-363 CrossRef
  33. Michaeli S., Galili G., Genschik P., Fernie A.R., Avin-Wittenberg T. Autophagy in plants — what's new on the menu? Trends Plant. Sci., 2016, 21(2): 134-144 CrossRef
  34. Alers S., Wesselborg S., Stork B. ATG13: Just a companion, or an executor of the autophagic program? Autophagy, 2014, 10(6): 944-956 CrossRef
  35. Suttangkakul A., Li F., Chung T., Vierstra R.D. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. The Plant Cell, 2011, 23: 3761-3779 CrossRef
  36. Li F., Vierstra R.D. Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy, 2014, 10(8): 1466-1467 CrossRef
  37. Kawamata T., Kamada Y., Kabeya Y., Sekito T., Ohsumi Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell, 2008, 19(5): 2039-2050 CrossRef
  38. Avin-Wittenberg T., Honig A., Galili G. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma, 2012, 249(2): 285-299 CrossRef
  39. Doelling J.H., Walker J.M., Friedman E.M., Thompson A.R, Vierstra R.D. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem., 2002, 277(36): 33105-33114 CrossRef
  40. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol., 2001, 2: 211-216 CrossRef
  41. Phillips A.R., Suttangkakul A., Vierstra R.D. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 2008, 178(3): 1339-1353 CrossRef
  42. Kellner R., de la Concepcion J.C., Maqbool A., Kamoun S., Dagdas Y.F. ATG8 expansion: a driver of selective autophagy diversification? Trends Plant. Sci., 2017, 22(3): 204-214 CrossRef
  43. Li F., Vierstra R.D. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci., 2012, 17: 526-537 CrossRef
  44. Pérez-Pérez M.E., Zaffagnini M., Marchand C.H., Crespo J.L., Lemaire S.D. The yeast autophagy protease Atg4 is regulated by thioredoxin. Autophagy, 2014, 10(11): 1953-1864 CrossRef
  45. Zamyatnin A.A. Uspekhi biologicheskoi khimii, 2015, 55: 145-180 (in Russ.).
  46. Thompson A.R., Doelling J.H., Suttangkakul A., Vierstra R.D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol., 2005, 138(4): 2097-2110 CrossRef
  47. Le Bars R., Marion J., Satiat-Jeunemaitre B., Bianchi M.W. Folding into an autophagosome: ATG5 sheds light on how plants do it. Autophagy, 2014, 10(10): 1861-1863 CrossRef
  48. Monastyrska I., Rieter E., Klionsky D.J., Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol. Rev. Camb. Philos., 2009, 84(3): 431-448 CrossRef
  49. Wang Y., Zheng X., Liu Y. Functional links between microtubules, autophagy and leaf starch degradation in plants. Plant Signaling and Behavior, 2016, 11(7): e1201626 CrossRef
  50. Moreau K., Renna M., Rubinsztein D.C. Connections between SNAREs and autophagy. Trends Biochem. Sci., 2013, 38(3): 57-63 CrossRef
  51. Han S., Wang Y., Zheng X., Jia Q., Zhao J., Bai F., Hong Y., Liu Y. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell, 2015, 27: 1316-1331 CrossRef
  52. Henry E., Fung N., Liu J., Drakakaki G., Coaker G. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses. PLOS Genetics, 2015, 11: e1005199 CrossRef
  53. Crespo J.L., S. Diaz-Troya S., Florencio F.J. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant. Physiol., 2005, 139: 1736-1749 CrossRef
  54. Liu Y., Bassham D.C. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE, 2010, 5(7): e11883 CrossRef
  55. Yip C.K., Murata K., Walz T., Sabatini D.M., Kang S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell., 2010, 38(5): 768-774 CrossRef
  56. Chang Y.-Y., Neufeld T.P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell, 2009, 20(7): 2004-2014 CrossRef
  57. Galluzzi L., Pietrocola F., Levine B., Kroemer G. Metabolic control of autophagy. Cell, 2014, 159(6): 1263-1276 CrossRef
  58. Chen L., Su Z.-Z., Huang L., Xia F.-N., Qi H., Xie L.-J., Xiao S., Chen Q.-F. The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. Front. Plant Sci., 2017, 8: article 1201 CrossRef
  59. Patel S., Caplan J., Dinesh-Kumar S.P. Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol., 2006, 9(4): 391-396 CrossRef
  60. Liu Y., Schiff M., Czymmek K., Tallócz, Z., Levine B., Dinesh-Kumar S.P. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 2005, 121(4): 567-577 CrossRef
  61. Shibuya K., Yamada T., Ichimura K. Autophagy regulates progression of programmed cell death during petal senescence in Japanese morning glory. Autophagy, 2009, 5(4): 546-547 CrossRef
  62. Kabbage M., Kessens R., Bartholomay L.C., William B. The life and death of a plant cell. Annu. Rev. Plant Biol., 2017, 68: 375-404 CrossRef
  63. Fomicheva A.S., Tuzhikov A.I., Beloshistov R.E., Trusova S.V., Galiullina R.A., Mochalova L.V., Chichkova N.V., Vartapetyan A.B. Uspekhi biologicheskoi khimii, 2012, 52: 97-126 (in Russ.).
  64. Collazo C., Chacun O., Borras O. Programmed cell death in plants resembles apoptosis of animals. Biotecnologia Aplicada, 2006, 23: 1-10.
  65. Trewavas A., Knight M. Mechanical signalling, calcium and plant form. Plant Mol. Biol., 1994, 26(5): 1329-1341 CrossRef
  66. Demidchik V., Maathuis F.J.M. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol., 2007, 175(3): 387-405 CrossRef
  67. Demidchik V. Reactive oxygen species and oxidative stress in plants. In: Plant stress physiology. 2nd edition. S. Shabala (ed.). Wallingford, CABI, 2012: 24-58 CrossRef
  68. Demidchik V., Shabala S.N., Coutts K.B., Tester M.A., Davies J. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J. Cell Sci., 2003, 116: 81-88 CrossRef
  69. Demidchik V., Cuin T.A., Svistunenko D., Smith S.J., Miller A.J., Shabala S., Sokolik A., Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci., 2010, 123: 1468-1479 CrossRef
  70. Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. J. Plant Physiol., 2014, 171(9): 696-707 CrossRef
  71. Maathuis F.J.M, Amtmann A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany, 1999, 84(2): 123-133 CrossRef
  72. Hos E., Vavasseur A., Mouline K., Dreyer I., Gaymard F., Porée F., Boucherez J., Lebaudy A., Bouchez D., Very A.A., Simonneau T., Thibaud J.B., Sentenac H. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. PNAS, 2003, 100(9): 5549-5554 CrossRef
  73. Li J., Zhang H., Lei H., Jin M., Yue G., Su Y. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. Plant. Cell. Rep., 2016, 35(4): 803-815 CrossRef
  74. Nassery H. The effects of salt and osmotic stress on the retention of potassium by excised barley and bean roots. New Phytol., 1975, 75(1): 63-67 CrossRef
  75. Shabala S., Demidchik V., Shabala L., Cuin T.A., Smith S.J., Miller A.J., Davies J.M., Newman I.A. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol., 2006, 141: 1653-1665 CrossRef
  76. MacKinnon R. Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew. Chem. Int. Edit., 2004, 43(33): 4264-4277 CrossRef
  77. Garcia-Mata C., Wang J., Gajdanowicz P., Gonzalez W., Hills A., Donald N., Riedelsberger J., Amtmann A., Dreyer I., Blatt M.R. A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J. Biol. Chem., 2010, 285(38): 29286-29294 CrossRef
  78. Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. Oxford University Press, USA, 2015 CrossRef
  79. Demidchik V., Shabala S. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated ‘ROS-Ca2+ Hub’. Funct. Plant Biol., 2017, 45(1): 9-27 CrossRef
  80. Bortner C.D., Hughes F.M. Jr., Cidlowski J.A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem., 1997, 272(51): 32436-32442 CrossRef
  81. Yu S.P., Yeh C.H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science, 1997, 278(5335): 114-117 CrossRef
  82. Park I.-S., Ja-Eun K. Potassium efflux during apoptosis. J. Biochem. Mol. Biol., 2002, 35(1): 41-46 CrossRef
  83. Remillard C.V., Yuan J.X. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. – Lung C., 2004, 286(1): 49-67 CrossRef

 

back