doi: 10.15389/agrobiology.2018.5.1013eng

UDC 634.11:631.8

 

APPLE TREE (Malus domestica Borkh) NITROGEN SUPPLY
OPTIMIZATION BY FERTIGATION AND BACTERIAL FERTILIZERS

A.I. Kuzin1,2, Yu.V. Trunov1, A.V. Solovyev1

1Michurinsk State Agrarian University, 101, ul. Internatsionalnaya, Michurinsk, Tambov Region, 393760 Russia, e-mail info@mgau.ru, kuzin@mgau.ru (✉ corresponding author), trunov.yu58@mail.ru, vladsoloviev1611@yandex.ru;
2Michurin Federal Scientific Centre, Federal Agency for Scientific Organizations, 30, ul. Michurina, Michurinsk, Tambov Region, 393774 Russia, e-mail info@fnc-mich.ru

ORCID:
Kuzin A.I. orcid.org/0000-0002-0446-0085
Trunov Yu.V. orcid.org/0000-0001-9406-3501
Solovyev A.V. orcid.org/0000-0002-3186-9767
The authors declare no conflict of interests

Received June 29, 2017

 

Nitrogen is a special macronutrient as it comes into soil only with rainfall, remains of living organisms and fertilizers. Changes of apple (Malus domestica Borkh) nitrogen supply faster affect the fruit yield and quality as compared to other nutrients. Our paper it the first multivariate study of soil, leaf and fruit mineral status of apple trees on leached chernozem at different ways and sources of nitrogen supply which shows high environmental safety and efficiency of fertigation. The aim of the research was development of a model for optimal nitrogen provision to improve apple tree yielding and fruit quality. Tests with cv. Zhigulevskoe grafted on rootstock 62-396 were carried out in 2014-2016 in the experimental apple orchard planted in 2007 (Michurin Federal Scientific Centre, Tambov Region) at 4.5×1.0 m planting spacing. Each plot comprised 5 trees; all tests were arranged in triplicate. Obtained data were statistically processed by dispersion, correlation and regression analysis. Humus content and soil acidity, abundant of rhizosphere microorganisms, apple tree productivity, and the levels of essential elements in leaves and soil were determined, as well as vitamin C, sugars and organic acids content in fruits. Experimental variants were control 1 (no fertilizers and no irrigation), control 2 (no fertilizers, drip irrigation); subsoil placing of N60, N90, N120, N60P20K60, N90P30K90, N120P60K120; fertigation of N15, N25, N35, N15P12K15, N25P20K25, N35P25K35; Azovit, 4 l/h (cells and spores of Azotobakter chroococcum Â-9029, 5×109 CFU/g), Azovit, 4 l/h + Phosphatovit, 4 l/h (cells and spores of Bacillus mucilaginosus Â-8966, 0,129 CFU/g). In deep fertilizer placement, the complex NPK but not N increases the apple tree yielding. Fertigation with N35P25K35 provides optimal level of all major nutrients in leaves and maximum fruit yield averaged 396.3 c/ha for three years. Single application of N fertilizers unbalances soil nutrient composition by increasing the content of easily hydrolyzed nitrogen, which, in turn, reduces the increase in yield. Complex fertilizing by fertigation and using bacterial preparations ensures the optimum N/P ratio in fruits (6.8), as well as K/N ratio (1.8-1.9). Fertilization by fertigation and in the tree trunk strips reduces the concentration of ascorbic acid in fruits at harvest maturity. N variants, despite the mode of fertilizer application, have the worst impact on vitamin C concentration which was 15-20 % lower compared to the complex fertilization, and the sugar-acid ratios also decreased to 10.7-12.8. Fertigation and use of bacterial fertilizers increase microbiological activity of the soil. As a result, we suggest the model for apple tree yield optimization based on proper use of nitrogen fertilizers. This study shows that the use of bacterial cultures as a temporary alternative to chemical fertilizer improves productivity in intensive apple orchards (up to 327.5 c/ha on average over 3 year experiment).

Keywords: Malus domestica Borkh, apple tree, nitrogen nutrition, fertigation, deep fertilizer placement, drip irrigation, yield, fruit quality.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Cooke J.E.K., Weigh M. Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology; research review. New Phytol., 2005, 167(1): 19-30 CrossRef
  2. Coyle D.R, Aubrey D.P., Siry J.P., Volfovicz-Leon R.R., Coleman M.D. Optimal nitrogen application rates for three intensively-managed hardwood tree species in southeastern USA. Forest Ecol. Manag., 2013, 303: 131-142 CrossRef
  3. Eroshenko F.V. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2010, 3: 221-224 (in Russ.).
  4. Xia G., Cheng L., Lakso A., Goffinet M. Effect of nitrogen supply on source-sink balance and fruit size of “gala” apple trees. J. Am. Soc. Hortic. Sci., 2009, 134(1): 126-133.
  5. Yasumura Y., Hikosaka K., Hirose T. Nitrogen resorption and protein degradation during leaf senescence in Chenopodium album grown in different light and nitrogen conditions. Funct. Plant Biol., 2007, 345(5): 409-417 CrossRef
  6. Trunov Yu.V. Biologicheskie osnovy mineral'nogo pitaniya yabloni [Fundamentals of apple tree mineral nutrition biology]. Voronezh, 2016 (in Russ.).
  7. Krysanov Yu.V. Sadovodstvo i vinogradarstvo, 1995, 3: 13-14 (in Russ.).
  8. Brunetto G., Bastos De Melo G.W., Toselli M., Quartieri M., Tagliavini M. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Revista Brasileira de Fruticiltura, 2015, 37(4): 1089-1104 CrossRef
  9. Mirabdulbaghi M., Pishbeen M., Effect of different forms and levels of nitrogen on vegetative growth and leaf nutrient status of nursery seedling rootstocks of peach. American Journal of Plant Nutrition and Fertilization Technology, 2012, 2: 32-44 CrossRef
  10. Neilsen G.H., Neilsen D. Nutritional requirements of apple. In: Apples: botany, production and uses. D.C. Ferree, I.J. Warrington (eds.). CABI Publ., Cambridge, 2003: 267-302 CrossRef
  11. Fidler V. V knige: Fiziologiya plodovykh rastenii [In: Physiology of fruit plants]. Moscow, 1983: 173-190 (in Russ.).
  12. Tartachnik I.I. Sadovodstvo i vinogradarstvo, 1997, 3: 7-9 (in Russ.).
  13. Gudkovskii V.A., Kozhina L.V., Nazarov Yu.B., Balakirev A.E. V sbornike: Nauchnye osnovy effektivnogo sadovodstva: Trudy Vserossiiskogo nauchno-issledovatel'skogo instituta sadovodstva im I.V. Michurina /Pod redaktsiei V.A. Gudkovskogo [Scientific basis for effective gardening: Proceedings of the Michurin All-Russian Research Institute of Horticulture. V.A. Gudkovskii (ed.)]. Voronezh, 2006: 47-64 (in Russ.).
  14. Sorki M.S., Babalar. M., Barker A.V., Lesani H., Asgari M.A. Fruit quality and nitrogen, potassium and calcium content of apple as influenced by nitrate: ammonium ratios in tree nutrition. J. Plant Nutr., 2014, 38(10): 1619-1627 CrossRef
  15. Wrona D. Response of young apple trees to nitrogen fertilization, on two different soils. Acta Hortic., 2006, 721: 153-158 CrossRef
  16. Konovalov S.N. Plodovodstvo i vinogradarstvo na yuge Rossii, 2011, 11: 56-57 (in Russ.).
  17. Savel'ev N.I., Yushkov L.N., Akimov M.Yu., Borzykh N.V., Mironov A.M., Khozhainov A.V. Vestnik Michurinskogo gosudarstvennogo agrarnogo universiteta, 2010, 2: 12-15 (in Russ.).
  18. Tagliavini M., Drahorad W., Dalla Via J. The International Symposium on Foliar Nutrition of Perennial Fruit Plants: Preface. Acta Hortic., 2002, 594: 9 CrossRef
  19. Zhang Y. Ascorbic acid in plants: biosynthesis, regulation and enhancement. Springer, NY, 2013 CrossRef
  20. Noctor G., Foyer G. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Phys., 1998, 49: 249-279 CrossRef
  21. De Castro E., Barrett D.M, Jobling J., Mitcham E.J. Biochemical factors associated with a CO2-induced flesh browning disorder of Pink Lady apples. Postharvest Biol. Tec., 2008, 48(2): 182-191.
  22. Shalata A., Neumann P.M. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J. Exp. Bot., 2001, 52(364): 2207-2211 CrossRef
  23. Ekmekci B.A., Karaman M. Exogenous ascorbic acid increases resistance to salt of Silubum marianum (L). Afr. J. Biotechnol., 2012, 11(42): 9932-9940.
  24. Sedov E.N., Makarkina M.A, Serova Z.M. Apple breeding for improvement of fruit biochemical composition. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 1: 76-84 (in Russ.),
  25. Gudkovski V.A., Kuznetsova L.V., Ponomariova N.P. Prognosis of storage quality of apples based on their chemical composition. Acta Hortic., 1990, 274: 175-177 CrossRef
  26. Peterburgskii A.V. Praktikum po agronomicheskoi khimii [Practical training on agronomic chemistry]. Moscow, 1968 (in Russ.).
  27. Mineev V.G., Sychev V.G., Amel'yanchik O.A., Bolysheva T.N., Gomonova N.F., Durynina E.P., Egorov V.S., Egorova E.V., Edemskaya N.L., Karpova E.A., Prizhukova V.G. Praktikum po agrokhimii [Practical training on agrochemistry]. Moscow, 2001 (in Russ.).
  28. Programma i metodika sortoizucheniya plodovykh, yagodnykh i orekhoplodnykh kul'tur /Pod redaktsiei E.N. Sedova, T.P. Ogol'tsovoi [Program and methods of studying varieties of fruit, berry and nut crops. E.N. Sedov, T.P. Ogol'tsova (eds.)]. Orel, 1999 (in Russ.).  
  29. Sirotin A.A. Praktikum po mikrobiologii [Practical training on microbiology]. Belgorod, 2007 (in Russ.).
  30. Pleshkov B.P. Praktikum po biokhimii rastenii [Practical training on plant biochemistry]. Moscow, 1985 (in Russ.).
  31. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1985 (in Russ.).
  32. Gonchar-Zaikin P.P., Chrtov V.G. V sbornike: Ratsional'noe prirodopol'zovanie i sel'skokhozyaistvennoe proizvodstvo v yuzhnykh regionakh Rossiiskoi Federatsii [In: Efficient environmental management and agricultural production in the southern regions of the Russian Federation]. Moscow, 2003: 559-564 (in Russ.).
  33. Tagliavini M., Millard P. Fluxes of nitrogen within deciduous fruit trees. Acta Sci. Pol., Hortorum Cultus, 2005, 4(1): 21-30.
  34. Kuzin A.I., Trunov Yu.V. Vestnik Rossiiskoi sel'skokhozyaistvennoi nauki, 2016, 1: 16-18 (in Russ.).
  35. Malaguti D., Rombolà A.D., Quartieri M., Lucchi A., Inderst C., Marangoni B., Tagliavini M. Effects of the rate of nutrients by fertigation and broadcast application in “gala” and “fuji” apple. Acta Hortic., 2006, 721: 165-172 CrossRef
  36. Fomenko T.G., Popova V.P. Plodovodstvo i vinogradarstvo yuga Rossii, 2016, 41(05): 151-166 (in Russ.).
  37. Lukin S.V., Chetverikova N.S., Erokhovets M.A. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Estestvennye nauki, 2011, 21(116/17): 95-102 (in Russ.).
  38. Tserling V.V. Diagnostika pitaniya sel'skokhozyaistvennykh kul'tur [Estimation of crop nutrition]. Moscow, 1990 (in Russ.).
  39. Kondakov A.K. Udobrenie plodovykh derev'ev, yagodnikov, pitomnikov i tsvetochnykh kul'tur [Fertilization of fruit trees, berry, nurseries and flower crops]. Michurinsk, 2006 (in Russ.).
  40. Kuzin A.I., Trunov Yu.V., Solov'ev A.V., Tarova Z.N. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2014, 102: 613-630 (in Russ.).
  41. Sedov E.N., Makarkina M.A., Levgerova N.S. Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta, 2007, 6(3): 20-24 (in Russ.).
  42. Kuzin A.I., Trunov Yu.V., Tarova Z.N. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2015, 111: 1448-1461 (in Russ.).
  43. Konovalov S.N., Petrova V.I., Egorova E.V. Uspekhi sovremennoi nauki, 2017, 2(9): 138-144 (in Russ.).
  44. Wang L., Yang F., E Y., Yuan J., Raza W., Huang Q., Shen Q. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbiological communities of an apple orchard soil. Front. Microbiol., 2016, 7: 1893 CrossRef

back