doi: 10.15389/agrobiology.2018.5.1037eng

UDC 579.64:631.461.52:57.044

Acknowledgements:
Supported financially by the Ministry of Education and Science of the Russian Federation (Agreement ¹ 14.607.21.0178, RFMEFI60717X0178)

 

FACTORS WHICH INFLUENCE TOXICITY OF LEGUME SEED
DISINFECTANTS TOWARDS BIOLOGICALS BASED ON SYMBIOTIC
NITROGEN FIXERS

Yu.V. Kosulnikov, Yu.V. Laktionov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency for Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia, e-mail laktionov@list.ru, kullavayn@gmail.com (✉ corresponding author)

ORCID:
Laktionov Yu.V. orcid.org/0000-0001-6241-0273
Kosulnikov Yu.V. orcid.org/0000-0003-1134-3503
The authors declare no conflict of interests

Received July 17, 2018

 

Symbiotic nitrogen fixers of Rhizobiaceae family serve as biologicals for agriculture. This is due to the fact that free-living inoculants which are not crop-specific possess much less nitrogen-fixing ability than the legume—rhizobial symbiosis of a plant and its species-specific symbiont. Despite this, the seedbed inoculation and a wider use of biopreparations of nodule bacteria in legumes are hampered by a number of objective deficiencies of such preparations, for example, the relatively low resistance of rhizobia to adverse environmental factors. These factors include direct contact of bacteria with aggressive substances, i.e. chemical fungicides used for seed treatment. This paper is the first to report that the rhizobia survival rate depends on the temperature of tank solutions and may differ under the effect of disinfectants based on the same active ingredient. That is, methods of disinfectant manufacture significantly affect its toxicity towards nodule bacteria. Our goal was to determine the effect of treaters, its concentration in the solution, the time the solution was kept and the temperature mode on the number of nodule bacteria of soybean, lupine, pea and lentils that survived in the solution. Bacterial suspensions studied were root nodule bacteria of soybean (Bradyrhizobium japonicum 634b), lupine (Bradyrhizobium lupini 367a), pea (Rhizobium leguminosarum 261b), lentil (Rhizobium leguminosarum 712), and chemical fungicides were Maxim (fludioxonil, 25 g/l; «Syngenta International AG», Switzerland), Protekt, (fludioksonil, 25 g/l; «Agro Expert Group LLC», Russia, «Agro Expert Group Kft.», Hungary), Protekt Forte (fludioxonil, 40 g/l + flutriafol, 30 g/l; «Agro Expert Group LLC», Russia, «Agro Expert Group Kft.», Hungary). Compatibility was determined by preparing tank solutions of biologicals and disinfectants, followed by determining the percentage of rhizobia that survived, depending on the type of disinfectant, its concentration (10 and 20 %), solution holding time (2, 4, 8 hours) and temperature (2-5, 16-18, 27 °C). Our results show that the resistance of nodule bacteria of various leguminous plants to these pesticides differs and decreases among the nodule bacteria of soybean, lupine, pea, lentils. The pesticide toxicity increases in the order Maxim, Protect, and Protect Forte. The presence of rhizobia in the same solution with disinfectants negatively affects the bacteria survival. The longer the mixture is kept, the less rhizobia remain alive. With increasing temperature of the mixture and the concentration of disinfectants in the solution, their toxicity increases. Low temperatures (2-5 °C) significantly increase the survival rate of rhizobia. The disinfectants Maxim and Protect, prepared on the basis of the same active ingredient with the same concentration, differed sharply in toxicity.

Keywords: symbiotic nitrogen fixers, Bradyrhizobium, Rhizobium, biologicals, seed dressing agents, treaters, compatibility and toxicity.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Zotikov V.I., Gryadunova N.V., Naumkina T.S., Sidorenko V.S. Zemledelie, 2014, 4: 6-8 (in Russ.).
  2. John R.P., Tyagi R.D., Brar S.K., Prevost D. Development of emulsion from rhizobial fermented starch industry wastewater for application as Medicago sativa seed coat. Eng. Life Sci., 2010, 10(3): 248-256 CrossRef
  3. Suzaki T., Yoro E., Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int. Rev. Cel. Mol. Bio., 2015, 316: 111-158 (doi:  10.1016/bs.ircmb.2015.01.004).
  4. Nikitin S.N., Zavalin A.A. Agrokhimiya, 2017, 6: 12-29 (in Russ.).
  5. Zherukov B.Kh. Izvestiya Gorskogo gosudarstvennogo agrarnogo universiteta, 2010, 47(2):  43-47 (in Russ.).
  6. Mirkin B.M., Naumova L.G. Osnovy obshchei ekologii [Fundamentals of general ecology]. Moscow, 2003 (in Russ.).
  7. Beveridge C.A., Mathesius U., Rose R.J., Gresshoff P. Common regulatory themes in meristem development and whole-plant homeostasis. Curr. Opin. Plant Biol., 2007, 10(1): 44-51 CrossRef
  8. Marra L.M., Fonsecs Sousa Soares C.R., Oliveira S.M., Avelar Ferreira P.A., Soares B.L. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil, 2012, 357: 289-307 CrossRef
  9. Kozhemyakov A.P., Laktionov Yu.V., Popova T.A., Orlova A.G., Kokorina A.L., Vaishlya O.B., Agafonov E.V., Guzhvin S.A., Churakov A.A., Yakovleva M.T. The scientific basis for the creation of new forms of microbial biochemicals. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2015, 50(3): 369-376 CrossRef
  10. Laktionov Yu.V., Popova T.A., Andreev O.A., Ibatullina R.P., Kozhemyakov A.P. Creating new forms of growth-stimulating microbial preparations and their performance on various cultures. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2011, 3: 116-118 (in Russ.).
  11. Rashmi P.A., Dayana J. Isolation of pesticide tolerating bacteria from cultivated soil in Kerala andthe study of the role of plasmid in pesticide tolerance. International Journal of Pure & Applied Bioscience, 2015, 3(1): 109-114.
  12. Naliukhin A.N., Laktionov Yu.V. Zemledelie, 2015, 2: 25-27 (in Russ.).
  13. Laptiev A.B., Kungurtseva O.V. Zernobobovye i krupyanye kul'tury, 2016, 2: 99-103 (in Russ.).
  14. Pimokhova L.I., Tsarapneva Zh.V. Zernobobovye i krupyanye kul'tury, 2016, 3: 89-94 (in Russ.).
  15. Potera C. Agriculture: pesticides disrupt nitrogen fixation. Environ. Health Persp., 2007, 115(12): A579 CrossRef
  16. Moorman T. Effects of herbicides on the survival of Rhizobium japonicum Strains. Weed Sci., 1986, 34(4): 628-633 CrossRef
  17. Reganold J.P., Papendick R.I., Parr J.F. Sustainable agriculture. Scientific American, 1990, 262: 112-120 CrossRef
  18. Vance C.P. Symbiotic nitrogen fixation and phosphorous acquisition. Plant nutrition in the world of declining renewable resources. Plant Physiol., 2001, 127: 390-397.
  19. Gopalakrishnan S., Sathya A., Vijayabharathi R., Varshney R.K., Gowda C.L.L., Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 2015, 5(4): 355-377 CrossRef
  20. Esedullaev S.T., Shmeleva N.V. Plodorodie, 2016, 6(93): 16-18 (in Russ.).
  21. Mmbaga G.W., Mtei K.M., Ndakidemi P.A. Yield and fiscal benefits of rhizobium inoculation supplemented with phosphorus (P) and potassium (K) in climbing beans (Phaseolus vulgaris L.) grown in Northern Tanzania. Agricultural Sciences, 2015, 6(8): 783-797 CrossRef
  22. Laktionov Yu.V., Belobrova S.N., Kozhemyakov A.P., Vorob'ev N.I., Sergaliev N.Kh., Amenova R.K., Tlepova A.S. Plodorodie, 2013, 5: 24-25 (in Russ.).
  23. Tikhonovich I.A., Zavalin A.A., Blagoveshchenskaya G.G., Kozhemyakov A.P. Plodorodie, 2011, 3: 9-13 (in Russ.).
  24. Borzenkova G.A., Vasil'chikov A.G. Zemledelie, 2014, 4: 37-39 (in Russ.).
  25. Borzenkova G.A. Zernobobovye i krupyanye kul'tury, 2014, 1: 22-30 (in Russ.).
  26. Yousaf S., Khan S., Aslam M.T. Effect of pesticides on the soil microbial activity. Pakistan J. Zool., 2013, 45(4): 1063-1067.
  27. Alam S., Kumar A., Kumar A., Prasad S., Tiwari A., Srivastava D., Srivastava S., Tiwari P., Singh J., Mathur B. Isolation and characterization of pesticide tolerant bacteria from brinjal rhizosphere. Int. J. Curr. Microbiol. App. Sci., 2018, Special Issue-7: 4849-4859.
  28. Drouin P., Sellami M., Prevost D., Fortin J., Antoun H. Tolerance to agricultural pesticides of strains belonging to four genera of Rhizobiaceae. Journal of Environmental Science and Health, Part B, 2010, 45(8): 780-788 CrossRef
  29. Deshmukh V.V., Raut B.T., Mane S.S., Ingle R.W., Josh M.S. Compatibility of Bradyrhizobium japonicum isolates with agrochemicals. American International Journal of Research in Formal, Applied & Natural Sciences, 2014, 6(1): 55-62.
  30. Campo R.J., Araujo R.S., Hungria M. Nitrogen fixation with the soybean crop in Brazil: compatibility between seed treatment with fungicides and bradyrhizobial inoculants. Symbiosis, 2009, 48: 154-163.
  31. Tariq M., Hameed S., Shahid M., Yasmeen T., Ali A. Effect of fungicides and bioinoculants on Pisum sativum. Research & Reviews: Journal of Botanical Sciences, 2016, 5(2): 36-40.
  32. Romero-Perdomo F.A., Camelo M., Bonilla R. Response of Bradyrhizobium japonicum to alginate in presence of pelleted fungicides on soybean seeds. Revista U.D.C.A Actualidad & Divulgación Científica, 2015, 18(2): 359-364.
  33. Rivera D., Obando M., Barbosa H., Tapias D.R., Buitrago R.B. Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium—cowpea interaction. Universitas Scientiarum, 2014, 19(3): 265-275 CrossRef
  34. Leo Daniel A.E., Venkateswarlu B., Suseelendra D., Praveen Kumar G., Mir Hassan Ahmed S.K., Meenakshi T., Uzma S., Sravani P., Lakshmi Narasu M. Effect of polymeric additives, adjuvants, surfactants on survival, stability and plant growth promoting ability of liquid bioinoculants. J. Plant Physiol. Pathol., 2013, 1: 2.
  35. Ahemad M., Khan M.S. Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology, 2011, 20(4): 661-669 CrossRef
  36. Moawad H., Abd El-Rahim W.M., Shawky H., Higazy A.M., Daw Z.Y. Evidence of fungicides degradation by rhizobia. Agricultural Sciences, 2014, 5(7): 618-624 CrossRef
  37. McGuinness M., Dowling D. Plant-associated bacterial degradation of toxic organic compounds in soil. Int. J. Environ. Res. Public Health, 2009, 6(8): 2226-2247 CrossRef
  38. Yakimenko M.V., Begun S.A., Sorokina A.I. Dal'nevostochnyi agrarnyi vestnik, 2016, 2(38): 38-41 (in Russ.).
  39. Yakimenko M.V. Zemledelie, 2016, 6, 46-48 (in Russ.).
  40. Gomes Y.C.B., Dalchiavon F.C., Valadão de Assis F.C. Joint use of fungicides, insecticides and inoculants in the treatment of soybean seeds. Rev. Ceres,2017, 64(3): 258-265 CrossRef
  41. Fox J.E., Gulledge J., Engelhaupt E., Burow M.E., McLachlan J.A. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. PNAS USA, 2007, 104(24): 10282-10287 CrossRef

back