doi: 10.15389/agrobiology.2017.5.964eng

UDC 633.491:631.527.51:577.21

Studies of plant resistance to late blight in the epiphytotic 2016, pollen fertility and molecular screening in 2016-2017 (VIR, St. Petersburg, Russia) were supported by Russian Science Foundation (grant № 16-16-04125). Hybridization and assessment of plant resistance to late blight and Potato virus Y were carried out in 2012-2015 (Swedish University of Agricultural Sciences — SLU, Sweden) with the financial support from the E. & I. Nilssons Foundation



N.M. Zoteyeva1, O.Yu. Antonova1, N.S. Klimenko1, O.V. Apalikova1,
U. Carlson-Nilsson1, 3, Yu.I. Karabitsina1, Yu.V. Ukhatova1,
T.A. Gavrilenko1, 4

1Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency of Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia,
e-mail (corresponding author);
2The Nordic Genetic Resource Centre (NordGen), P.O. Box 41, SE-230 53 Alnarp, Sweden;
3Swedish University of Agricultural Sciences (SLU), P.O. Box 7070, SE-750 07 Uppsala, Sweden;
4Saint-Petersburg State University, Biological Department, 7/9, Universitetskaya nab., St. Petersburg, 199034 Russia

Zoteyeva N.M.
Antonova O.Yu.
Klimenko N.S.
Apalikova O.V.
Carlson-Nilsson U.
Karabitsina Yu.I.
Ukhatova Yu.V.
Gavrilenko T.A.

Received June 27, 2017


Nowadays potato breeding is targeting to develop genetically divers high yielding varieties with multiple pathogen resistance traits. Interspecific hybridization jointed with marker-assistant-selection (MAS) can effectively combine the R genes from different resistance sources. Additionally to effective pyramiding the target genes, MAS allows to restrict introgression of genetic factors conferring the undesirable traits, for example, male sterility of interspecific hybrids associated with Solanum stoloniferum-derived W/gamma cytoplasm that complicate the traditional breeding. Current study is targeting to search for the opportunities to improve the efficiency of introgressive hybridization between common potato and Mexican polyploid species Solanum. neoantipoviczii (= S. stoloniferum) and S. guerreroense using MAS with DNA markers for different cytoplasmic types and markers associated with major R-genes to the most harmful potato pathogens. DNA-based markers of genes for late blight resistance (R2 like, R3a, Rpi-blb1, Rpi-sto1), for extreme resistance to Potato virus Y (PVY) (Ryadg, Rysto, Ry-fsto) and for H1 gene for resistance to the root cyst nematode (Globodera rostochiensis, pathotype Ro1) were used in this study. Based on the MAS, hybrid genotypes with different combinations of these markers were selected. Among them, there were the clones with high field resistance to late blight and to PVY. Of 29 hybrid clones from different combinations of crossing with polyploid Mexican species used as the maternal forms, 15 had a W/g cytoplasmic type and were male sterile; both these traits were maternally inherited. The remaining hybrids with W/a cytoplasm produced fertile pollen and were used in interspecific crosses as pollinators. Selection of resistant clones with W/alpha cytoplasm and elimination of genotypes with sterile W/g cytoplasm among wild species germplasm could increase the probability of obtaining male fertile introgressive lines. This approach allows to obtain the multi-species hybrid genotypes that combine R genes for resistance to pathogens from different Mexican species and to avoid various types of male sterility in breeding. The joint use of two systems of DNA markers, i.e. nuclear markers associated to R genes, and cytoplasmic markers for male sterility factors, could reduce costs and increase efficiency of target gene pyramiding programs.

Keywords: Solanum spp., potato, DNA markers, R genes, cytoplasmic types, interspecific hybridization.


Full article (Rus)

Full text (Eng)



  1. Yuzepchuk S.V., Bukasov S.M. Trudy Vsesoyuznogo sezda po genetike, selektsii, semenovodstvu i plemennomu zhivotnovodstvu [Proc. Conf. on genetics, plant breeding, seed production and pedigree cattle breeding]. Leningrad, 1929, V. 3: 593-611 (in Russ.).
  2. Vavilov N.I. Izvestiya gosudarstvennogo geograficheskogo obshchestva, 1939, 10: 1487-1515 (in Russ.).   
  3. Bukasov S.M. Izvestiya akademii nauk SSSR, 1938, 13: 711-732 (in Russ.).   
  4. Kameraz A.Ya. Vestnik sotsialisticheskogo rastenievodstva. 1940, 4: 13-29 (in Russ.).   
  5. Hermsen J.G.Th. Introgression of genes from wild species, including molecular and cellular approaches. In: Potato genetics. J.E. Bradshaw, G.R. Mackay (eds.). CABI, Wallingford, UK, 1994: 515-539.
  6. Ortiz R. Potato breeding via ploidy manipulations. Plant Breeding Reviews, 1998, 16: 15-86 CrossRef
  7. Jansky S. Overcoming hybridization barriers in potato. Plant Breeding, 2006, 125: 1-12. CrossRef
  8. Watanabe K. Potato genetics, genomics, and applications. Breeding Science, 2015, 65(1): 53-68 CrossRef
  9. Gavrilenko T.A., Ermishin A.P. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(1): 16-29 CrossRef (in Russ.).   
  10. Gebhardt C., Bellin D., Henselewski H., Lehmann W., Schwarzfischer J., Valkonen J.P.T. Marker-assisted combination of major genes for pathogen resistance in potato. Theoretical and Applied Genetics, 2006, 112: 1458-1464 CrossRef
  11. Tan M.Y.A., Hutten R.C.B., Visser R.G.F., van Eck H.J. The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato. Theoretical and Applied Genetics, 2010, 121: 117-125 CrossRef
  12. Fadina O.A., Beketova M.P., Sokolova E.A., Kuznetsova M.A., Smetanina T.I., Rogozina E.V., Khavkin E.E. Anticipatory breeding: molecular markers as a tool in developing donors of potato (Solanum tuberosum L.) late blight resistance from complex interspecific hybrids. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(1): 84-94 CrossRef
  13. Haverkort A.J., Struik P.C., Visser R.G.F., Jacobsen E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 2009, 52: 249-264 CrossRef
  14. Ross H. Potato breeding — problems and perspectives. Advances in Plant Breeding (Supplements to Journal of Plant Breeding). V. 13. Paul Parey, Berlin-Hamburg, 1986.
  15. Dionne L.A. Sterility in Solanum demissum. American Potato Journal, 1961, 38: 117-120 CrossRef
  16. Song Y.S., Schwarzfischer A. Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. American Journal of Potato Research, 2008, 85: 159-170 CrossRef
  17. Hosaka K., Sanetomo R. Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theoretical and Applied Genetics, 2012, 125: 1237-1251 CrossRef
  18. Loessl A., Götz M., Brbaun A., Wenzel G. Molecular markers for cytoplasm in potato: male sterility and contribution of different plastid-mitochondrial configurations to starch production. Euphytica, 2000, 116: 221-230 CrossRef
  19. Sanetomo R., Gebhardt C. Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biology, 2015, 15: 162 CrossRef
  20. Sanetomo R, Hosaka K. A maternally inherited DNA marker, descended from Solanum demissum (2n = 6x = 72) to S. tuberosum (2n = 4x = 48). Breeding Science, 2011, 61: 426-434 CrossRef
  21. Zoteeva N.M., Khzhanovska M., Evstratova L.P., Fasulati S.R., Yusupov T.M. Ustoichivost' obraztsov dikikh vidov kartofelya k boleznyam i vreditelyam. Katalog mirovoi kollektsii VIR /Pod redaktsiei L.I. Kostinoi [Resistance of wild potato species to pests and diseases. Catalog of VIR Wold Collection. L.I. Kostina (ed.)]. St. Petersburg, 2004 (in Russ.).    
  22. Zoteyeva N., Chrzanowska M., Flis B., Zimnoch-Guzowska E. Resistance to pathogens of the potato accessions from the collection of N.I. Vavilov Institute of Plant Industry (VIR). American Journal of Potato Research, 2012, 89: 277-293 CrossRef
  23. Zoteyeva N., Carlson-Nilsson U., Bengtsson T., Olsson K., Ortiz R. Late blight and virus host-plant resistances, crossing ability and glycoalkaloids in Nordic potato germplasm. Acta Agriculturae Scandinavica, Section B, Soil and Plant Science, 2017, 67(7): 628-636 CrossRef
  24. Zoteyeva N., Mezaka I., Vilcâne D., Carlson-Nilsson U., Skrabule I., Rostoks N. Assessment of genes R1 and R3 conferring resistance to late blight and of gene Rysto conferring resistance to potato virus Y in two wild species accessions and their hybrid progenies. Proceedings of the Latvian Academy of Sciences, Section B, 2014, 68(3/4): 133-141 CrossRef
  25. Zoteyeva N.M. Expression of resistance to Phytophthora infestans in climatic chamber-, screenhouse- and field-grown wild potato species in a detached leaflet assay. Plant Breeding and Seed Science, 2004, 50: 129-135.
  26. Ali A., Moushib L.I., Lenman M., Levander F., Olsson K., Carlson-Nilson U., Zoteyeva N., Liljeroth E., Andreasson E. Paranoid potato: phytophthora-resistant genotype shows constitutively activated defense. Plant Signaling & Behavior, 2012, 7(3): 1-9 CrossRef
  27. Lenman M., Ali A., Muhlenbock P., Carlson-Nilsson U., Liljeroth E., Champouret N., Vleeshouwers V.G., Andreasson E. Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015. Theoretical and Applied Genetics, 2016, 129(1): 105-115 CrossRef
  28. Zoteyeva N.M. Wild potato species from the VIR collection as source of resistance to late blight. In: Potato global research and development. V. 1. S.M. Khurana, G.S. Shekhewat, B.P. Singh, S.K. Pandey (eds.). Indian Potato Association, Shimla, 2000: 556-560.
  29. Zoteyeva N.M., Carlson-Nilsson U.B. Proc. European Plant Genetic Resources Conference «Pre-breeding — fishing in the gene pool». R. Ortiz (ed.). NordGen, SLU, Alnarp, Sweden, 2013.
  30. Zoteeva N.M. Vestnik zashchity rastenii, 2016, 3(89): 72-73 (in Russ.).    
  31. Gavrilenko T., Antonova O., Shuvalova A., Krylova E., Alpatyeva N., Spooner D., Novikova L. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution, 2013, 60(7): 1997-2015 CrossRef
  32. Valkonen J.T.P., Wiegmann K., Hämäläinen J.H., Marczewaski W., Watanabe K.N. Evidence for utility of the same PCR-base markers for selection of extreme resistance to Potato virus Y controlled by Rysto of Solanum stoloniferum derived from different sources. Annals of Applied Biology, 2008, 152: 121-130 CrossRef
  33. Kasai K., Morikawa Y., Sorri V.A., Valkonen J.P.T., Gebhardt C., Wata-
    nabe K.N. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 2000, 43: 1-8 CrossRef
  34. Wang M., Allefs S., van der Berg R., Vleeshouwers V.G.A.A., van der Vossen E.A.G., Vosman B. Allele mining in Solanum: conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116: 933-943 CrossRef
  35. Zhu S., Li Y., Vossen J., Visser R.F., Jacobsen E. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Research, 2012, 21: 89-99 CrossRef
  36. Sokolova E., Pankin A., Beketova M., Kuznetsova M., Spiglazova S., Rogozina E., Yashina I., Khavkin E. SCAR markers of the R-genes and germplasm of wild Solanum species for breeding late blight-resistant potato cultivars. Plant Genetic Resources: Characterization and Utilization, 2011, 9(2): 309-312 CrossRef
  37. Huang S., van der Vossen E.A.G., Kuang H., Vleeshouwers V.G.A.A., Zhang N., Borm T.J.A., van Eck H.J., Baker B., Jacobsen E., Visser R.G.F. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal, 2005, 42: 251-261 CrossRef
  38. Schultz L., Cogan N.O.I., McLean K., Dale M.F.B., Bryan G.J., Forster J.N.W., Slater A.T. Evaluation and implementation of a potential diagnostic molecular marker for H1-conferred potato cyst nematode resistance in potato (Solanum tuberosum L.). Plant Breeding, 2012, 131: 315-321 CrossRef
  39. Johnston S.A., den Nijs T.P.M., Peloquin S.J., Hanneman R.E. Jr. The significance of genic balance to endosperm development in interspecific crosses. Theoretical and Applied Genetics, 1980, 57: 5-9 CrossRef
  40. Heldák J., Bezo M., Štefúnová V., Galliková A. Selection of DNA markers for detection of extreme resistance to Potato virus Y in tetraploid potato (Solanum tuberosum L.) F1 progenies. Czech Journal of Genetics and Plant Breeding, 2007, 43(4): 125-134.
  41. Loessl A., Adler N., Horn R., Frei U., Wenzel G. Chondriome-type characterization of potato: mt alpha, beta, gamma, delta, epsilon and novel plastid-mitochondrial configurations in somatic hybrids. Theoretical and Applied Genetics, 1999, 99: 1-10.
  42. van der Vossen E., Sikkema A., Hekkert B.L., Gros J., Stevens P., Muskens M., Wouters D., Pereira A., Stiekema W., Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant Journal, 2003, 36: 867-882 CrossRef
  43. Vleeshouwers V.G.A.A., Rietman H., Krenek P., Champouret N., Young C., Oh S.K., Wang M., Bouwmeester K., Vosman B., Visser R.G.F., Jacobsen E., Govers F., Kamoun S., van der Vossen E.A.G. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE, 2008, 3(8): e2875 CrossRef
  44. Alpizar L.G., Carbone I., Ristaino J.B. An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. PNAS, 2007, 104(9): 3306-3311 CrossRef 
  45. Åsman A.K.M., Vetukuri R.R., Jahan S.N., Fogelqvist J., Orcoran P., Avrova A.O., Whisson S.C., Dixelius C. Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection. BMC Microbiology, 2014, 14: 308 CrossRef
  46. Rietman H., Bijsterbosch G., Cano L.M., Lee H.R., Vossen J.H., Jacobsen E., Visser R.G.F., Kamoun S., Vleeshouwers V.G.A.A. Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors. MPMI, 2012, 25(7): 910-919 CrossRef
  47. Vossen J.H., van Arkel G., Bergervoet M., Jo K.R., Jacobsen E., Visser R.G.F. The Solanum demissum R8 late blight resistance gene is a Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theoretical and Applied Genetics, 2016, 129(9): 1785-1796 CrossRef
  48. Anisimova I.N., Gavrilenko T.A. Vavilovskii zhurnal genetiki i selektsii, 2017, 21(1): 83-95 CrossRef (in Russ.).