doi: 10.15389/agrobiology.2017.5.905eng

UDC 633/635:57.086.83:579

Acknowlegdgements:
Supported by a subsidy from Federal Target Program (agreement No. 14.575.21.0136 of 26.09.2017)

 

GENETIC SOURCES REQUIRED FOR SOYBEAN BREEDING
IN THE CONTEXT OF NEW BIOTECHNOLOGies
(review)

M.A. Vishnyakova1, I.V. Seferova1, M.G. Samsonova2

1Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency of Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia,
e-mail m.vishnyakova.vir@gmail.com (corresponding author);
2Peter the Great St. Petersburg Polytechnic University, 29, ul. Politechnicheskaya,
St. Petersburg, 195251 Russia,
e-mail m.g.samsonova@gmail.com

ORCID:
Vishnyyakova M.A. orcid.org/0000-0003-2808-7745
Seferova I.V. orcid.org/0000-0003-3308-9198

Received June 11, 2017

Soybean is a strategic crop of multipurpose use. Production and consumption of soybeans are increasing year by year, with new uses appeared. Soybean can become one of the key plants in bioeconomics. Food, fodder, technical, medical and pharmaceutical use of soybeans is diversified and requires specialized varieties with the target traits. This poses new challenges for breeders and, accordingly, for holders of germplasm collections that supply source material for breeding. VIR soybean collection for many years serves as a genetic source for breeding. Based on long-term phenotyping, the accessions are systematized by a number of traits. Rapid development of new molecular technologies, e.g. marker-assisted selection (MAS) and genomic breeding are targeted to optimize both creation of new varieties and searching for the necessary genotypes. A number of agronomically important quantitative trait loci (QTL) have been found for soybean (Y. Xu, J.H. Crouch, 2008; D.C. Leite et al., 2016; Y. Ma et al., 2016; H. Liu et al., 2017), and putative candidate genes have been determined (E.Y. Hwang et al., 2014; J. Zhang et al., 2015; J. Zhang et al., 2016). This allows quick and targeted search for genotypes in germplasm collections, and necessitates relevant knowledge of the gene pool, i.e. the trait variability, the industrial uses, including the use of alternative values, etc. The purpose of this paper is an overview of the genetic diversity of VIR soybean collection in the context of modern breeding needs, in particular the creation of specialized varieties for target use, taking into account the crop studying and diversifying in the world, as well as developing new breeding technologies. It is shown that the VIR soybean collection contains genetic sources for high grain quality, i.e. high in protein and low in antinutritional substances, improved in oil and soy milk characteristics, etc. Breeding early maturated varieties for all soybean producing regions based on relevant gene sources is urgent. For all the traits discussed, the paper gives the modern data on genetic control, genomic organization and mapping genes and QTL. It is concluded that the range of soybeans uses should be based on a diversity of specialized varieties with specified parameters for target use and different adaptive abilities.

Keywords: Glycine max (L.) Merr., soybean, VIR collection, genetic resources, initial material, QTL, genes, breeding, specific uses, grain quality, early maturation.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. WAP 09-17. September 2017. Circular Series. USDA, Foreign Agr. Service. Available https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Accessed August 22, 2017.
  2. Gosudarstvennyi reestr selektsionnykh dostizhenii, dopushchennykh k ispol'zovaniyu [State Register of Breeding Achievements]. Moscow, 2017 (in Russ.).
  3. Hill J., Nelson E., Tilman D., Polasky S., Tiffany D. Environmental, economic, and energetic costs, and benefits of biodiesel and ethanol biofuels. PNAS USA, 2006, 103: 11206-11210 CrossRef
  4. Yi-you L. The soybean protein fibre — a healthy and comfortable fibre for the 21st century. Fibres and Textiles in Eastern Europe, 2004, 12(2/46): 8-9.
  5. Brooks M.M. Soybean protein fibres — past, present and future. In: Woodhead publishing series in textiles. V. 47. Biodegradable and sustainable fibres. Cambridge, 2005: 398-440 CrossRef
  6. Petibskaya V.S. Nauchno-tekhnicheskii byulleten' VNIIMK, 2002, 126: 76-83 (in Russ.).
  7. Nekrasova T.E. Masla i zhiry, 2005, 11(57): 2-4 (in Russ.).
  8. Forging new frontiers. Aquaculture America. Int. Conf. and Exposition. Texas, USA, 2017. Available http://www.aquafeed.com. Accessed August 22, 2017.
  9. Petibskaya V.S., Kucherenko L.A., Zelentsov S.V. Nauchno-tekhnicheskii byulleten' VNIIMK, 2006, 2(135): 115-116 (in Russ.).
  10. Zaitsev N.I., Bochkarev N.I., Zelentsov S.V. Maslichnye kul'tury, 2016, 2(166): 3-11 (in Russ.).
  11. Xu Y., Crouch J.H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci., 2008, 48: 391-407 CrossRef
  12. Leite D.C., Pinheiro J.B., Campos J.B., Di Mauro A.O., Unêda-Trevisoli S.H. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program. Genet. Mol. Res., 2016, 15(1): gmr.15017 CrossRef
  13. Ma Y., Kan G., Zhang X., Wang Y., Zhang W., Du H., Yu D. Quantitative Trait Loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). J. Agric. Food Chem., 2016, 64(17): 3473-3483 CrossRef
  14. Liu H., Cao G., Han Y., Jiang Z., Zhao H., Li W. Identification of the QTL underlying the vitamin E content of soybean seeds. Plant Breeding, 2017, 136(2): 147-154 CrossRef
  15. Heffner E.L., Sorrells M.E., Jannink J.-L. Genomic selection for crop improvement. Crop Sci., 2009, 49: 1-12 CrossRef
  16. Hwang E.Y., Song Q.J., Jia G.F., Specht J.E., Hyten D.L., Costa J., Cregan P.B. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 2014, 15: 1 CrossRef
  17. Zhang J., Song Q., Cregan P., Jiang G.-L. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor. Appl. Genet., 2016; 129: 117-130 CrossRef
  18. Zhang J., Song Q., Cregan P.B., Nelson R.L., Wang X., Wu J., Jiang G.L. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics, 2015, 16: 217 CrossRef
  19. Wilson R.F. Seed composition. In: Soybeans: improvement, production and uses. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Madison, Wisconsin, USA, 2004: 621-677.
  20. Korsakov N.I., Myakushko Yu.P. Trudy po prikladnoi botanike, genetike i selektsii, 1976, 57: 13-19 (in Russ.).
  21. Stobaugh B., Florez-Palacios L., Chen P., Orazaly M. Agronomic evaluation of high-protein and high-oil soybean genotypes for specialty markets. Journal of Crop Improvement, 2017, 31(2): 247-260 CrossRef
  22. Chung J., Babka H.L., Graef G.L., Staswick P.E., Lee D.J., Cregan P.B., Shoemaker R.C., Specht J.E. The seed protein, oil and yield QTL on soybean linkage group I. Crop Sci., 2003, 43(3): 1053-1067 CrossRef
  23. Wilcox J.R. Increasing seed protein in soybean with eight cycles of recurrent selection. Crop Sci., 1998, 38(6): 1536-1540 CrossRef
  24. Myakushko Yu.P. Selektsiya i semenovodstvo soi na Severnom Kavkaze. Avtoreferat doktorskoi dissertatsii [Soya: breeding and seed production]. Leningrad, 1976 (in Russ.).
  25. Bellaloui N., Reddy K.N., Bruns A., Gillen A. M., Mengistu A., Zobio-
    le L.H.S., Fisher D.K., Abbas H.K., Zablotowicz R., Kremer R.J. Soybean seed composition and quality: interactions of environment, genotype, and management practices. In: Soybeans: cultivation, uses and nutrition. J. Maxwell (ed.). Nova Science Publishers, 2011: 1-42.
  26. Seferova I.V., Nekrasov A.Yu., Silaeva O.I., Kiyashko N.I., Teter Z.Yu., Kiva T.I., Nikishkina M.A. Soya. Iskhodnyi material dlya selektsii soi v Krasnodarskom krae. Katalog mirovoi kollektsii VIR [Soya. Genetic resources for use in breeding in the Krasnodra Territory]. St. Petersburg, 2008, vypusk 782 (in Russ.).
  27. Seferova I.V., Boiko A.P., Shelenga T.V., Sholukhova T.A. Trudy po prikladnoi botanike, genetike i selektsii, 2014, 175(3): 34-41 (in Russ.).
  28. Boiko A.P., Seferova I.V., Shelenga T.V., Sholukhova T.A., Andreeva T.M. Soya. Iskhodnyi material dlya selektsii v yuzhnykh regionakh Rossiiskoi Federatsii. Katalog mirovoi kollektsii VIR. St. Petersburg, 2014, vypusk 817 (in Russ.).
  29. Jun T.H., Van K., Kim M.Y., Lee S.H., Walker D.R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162: 179-191 CrossRef
  30. Phansak P., Soonsuwon W., Hyten D.L., Song Q., Cregan P.G., Graef G.L., Specht J.E. Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. G3. Genes, Genomes, Genetics, 2016, 6(6): 1635-1648 CrossRef
  31. Cao Y., Li S., Wang Z., Chang F., Kong J., Gai J., Zhao T. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front. Plant Sci., 2017, 8: 1222 CrossRef
  32. Bolon Y.T., Joseph B., Cannon S.B., Graham M.A., Diers B.W., Farmer A.D., May G.D., Muehlbauer G.J.,  Specht J.E., Tu Z.J., Weeks N., Xu W.W., Shoemaker R.C., Vance C.P. Complementary genetic and genomic approaches help to characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol., 2010, 10: 41 CrossRef
  33. Patil G., Mian R., Vuong T., Pantalone V., Song Q., Chen P., Shannon G.J., Carter T.C., Nguyen H.T. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor. Appl. Genet., 2017, 130(10): 1975-1991 CrossRef
  34. Wolf W.J. Soybean proteins: their functional, chemical, and physical properties. J. Agr. Food Chem., 1970, 18(6): 969-976 CrossRef
  35. Onodera Y., Ono T., Nakasato K., Toda K. Homogeneity and microstructure of tofu depends on 11S/7S globulin ratio in soymilk and coagulant concentration. Food Sci. Technol. Res., 2009, 15(3): 265-274 CrossRef
  36. Adamovskaya V.G., Molodchenkova O.O., Sichkar' V.I., Kartuzova T.V., Bezkrovnaya L.YA., Lavrova G.D. Vіsnik Uraïns'kogo tovaristva genetikіv і selektsіonerіv, 2016, 14(2): 163-167 (in Russ.).
  37. Khatib K.A., Herald T.J., Aramouni F.M., MacRithie F., Schapaugh W.T. Characterization and functional properties of soy β-conglycinin and glycinin of selected genotypes. J. Food Sci., 2002, 67: 2923-2929 CrossRef
  38. Kyoko S., Watanabe T. Differences in functional properties of 7S and 11S soybean proteins. Journal of Texture Studies, 1978, 9(1-2): 135-157 CrossRef
  39. Li J., Matsumoto S., Nakamura A., Maeda H., Matsumura Y. Characterization and functional properties of sub-fractions of soluble soybean. Biosci. Biotechnol. Biochem., 2009, 73: 2568-2575 CrossRef
  40. Yaklich R.W. β-Conglycinin and glycinin in high-protein soybean seeds. J. Agric. Food Chem., 2001, 49(2): 729-735 CrossRef
  41. Beilinson V., Chen Z., Shoemaker R.C., Fischer R.L., Goldberg R.B., Nielsen N.C. Genomic organization of glycinin genes in soybean. Theor. Appl. Genet., 2002, 104: 1132-1140 CrossRef
  42. Li C., Zhang Y.-M. Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.). Heredity, 2011, 106(4): 633-641 CrossRef
  43. Vishnyakova M.A., Seferova I.V. V knige: Identifitsirovannyi genofond v kollektsii VIR i ego ispol'zovanie v selektsii. St. Petersburg, 2005: 841-850 (in Russ.).
  44. Fang C., Ma Y., Wu S., Liu Z., Wang Z., Yang R., Hu G., Zhou Z., Yu H., Zhang M., Pan Y., Zhou G., Ren H., Du W., Yan H., Wang Y., Han D., Shen Y., Liu S., Liu T., Zhang J., Qin H., Yuan J., Yuan X., Kong F., Liu B., Li J., Zhang Z., Wang G., Zhu B., Tian Z. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol., 2017, 18: 161 CrossRef
  45. Van Eenennaam A.L., Lincoln K., Durrett T.P., Valentin H.E., Shewmaker C.K., Thorne G.M., Jiang J., Baszis S.R., Levering C.K., Aasen E.D., Hao M., Stein J.C., Norris S.R., Last R.L. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell, 2003,15: 3007-3019 CrossRef
  46. Ujiie A., Yamada T., Fujimoto K., Endo Y., Kitamura K. Identification of soybean varieties with high a-tocopherol content. Breed. Sci., 2005,55: 123-125 CrossRef
  47. Dwiyanti M.S., Yamada T., Sato M., Abe J., Kitamura K. Genetic variation of g-tocopherol methyltransferasegene contributes to elevated a-tocopherol content in soybean seeds. BMC Plant Biol., 2011, 11: 152 CrossRef
  48. Axelrod B., Cheesbrough T.M., Laakso S. Lipoxygenase from soybeans. Methods Enzymol.,1981, 71: 441-451 CrossRef
  49. Rackis J.J., Hoing D.H., Sessa D.S., Moser H.A. Lipoxygenase and peroxidase activities of soybeans as related to flavor profile during maturation. Cereal Chemistry, 1972, 49: 586-597.
  50. Reinprecht Y., Luk-Labey S.Y., Yu K., Rajcan I., Ablett G.R., Peter Pauls K. Molecular basis of seed lipoxygenase null traits in soybean line OX948. Theor. Appl. Genet., 2011, 122(7): 1247-1264 CrossRef
  51. Kumar V., Rani A., Goyal L., Dixit A.K., Manjaya J.G., Dev J., Swamy M. Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location. J. Agric. Food Chem., 2010, 58(8): 5081-5085 CrossRef
  52. Santana A.C., Carrao-Panizzi M.C., Mandarino J.M.G., Leite R.S., Sil-
    va J.B., Ida E.I. Effect of harvest at different times of day on the physical and chemical characteristics of vegetable-type soybean. Ciênc. Tecnol. Aliment., 2012, 32(2): 351-356 CrossRef
  53. Cahoon E.B. Genetic enhancement of soybean oil for industrial uses: prospects and challenges. AgBioForum, 2003, 6(1-2): 11-13.
  54. Burton J., Wilson R., Brim C. Registration of N79-2077-12 and N87-2122-4, two soybean germplasm lines with reduced palmitic acid in seed oil. Crop Sci.,1994, 34: 313 CrossRef
  55. Rahman S.M., Anai T., Kinoshita T., Takagi Y. A novel soybean germplasm with elevated saturated fatty acids. Crop Sci., 2003, 43: 527-531 CrossRef
  56. Stacey M.G., Cahoon R.E., Nguyen H.T., Cui Y., Sato S., Nguyen C.T., Phoka N., Clark K.M., Liang Y., Forrester J., Batek J., Do P.T., Sleper D.A., Clemente T.E., Cahoon E.B., Stacey G. Identification of homogentisate dioxygenase as a target for vitamin E biofortification in oilseeds. Plant Physiol., 2016, 172(3): 1506-1518 CrossRef
  57. Ning L., Sun P., Wang Q., Ma D., Hu Z., Zhang D., Zhang G., Cheng H., Yu D. Genetic architecture of biofortification traits in soybean (Glycine max L. Merr.) revealed through association analysis and linkage mapping. Euphytica, 2015, 204: 353-369 CrossRef
  58. Zhang D., Song H., Cheng H., Hao D., Wang H., Kan G., Jin H., Yu D. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet., 2014, 10: 1004061 CrossRef
  59. Benken I.I., TomilinaT.B.Nauchno-tekhnicheskii byulleten' VIR, 1985, 149: 3-10 (in Russ.).
  60. Benken I.I., Nikishkina M.A., Shchelko L.G., Serova T.S. Trudy po prikladnoi botanike, genetike i selektsii, 1997, 152: 129-133 (in Russ.).
  61. Singh R.J., Hymowitz T. Exploitation of the wild perennial Glycine species for improving the soybean. In: Harnessing the soy potential for health and wealth. The Soyben Processors Association of India, 2001: 58-61.
  62. Yavelow J., Finlay T.H., Kennedy A.R., Troll W. Bowman-Birk soybean protease inhibitor as an anticarcinogen. Cancer Res., 1983, 43(5 Suppl): 2454-2459.
  63. Kobayashi H. Prevention of cancer and inflammation by soybean protease inhibitors. Front. Biosci., 2013, 5: 966-73 CrossRef
  64. Komissarova Yu.V. Geterogennost' i polimorfizm ingibitorov proteinaz soi i gorokha. Avtoreferat kandidatskaya dissertatsiya [Heterogeity and polymorphism of soybean and pea proteins. PhD Thesis]. St. Petersburg, 1998 (in Russ.).  
  65. Vavilov N.I. V knige: Trudy Noyabr'skoi sessii Akademii nauk SSSR 25-30/XI 1931 g [Proc. November’s session of Academy of Sciences of the USSR, 25-30/XI 1931].Leningrad, 1932: 250-264 (in Russ.).  
  66. Fehr W.R. Principles of cultivar development. V. 1. Theory and technique. Macmillan, NY, 1991.
  67. Jia H., Jiang B, Wu C., Lu W., Hou W., Sun S., Yan H., Han T. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS ONE, 2014, 9(4): e94139 CrossRef
  68. Jiang B., Nan H., Gao Y., Tang L., Yue Y., Lu S., Ma L., Cao D., Sun S., Wang J., Wu C., Yuan X., Hou W., Kong F., Han T., Liu B. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE, 2014, 9(8): e106042 CrossRef
  69. Zhao C., Takeshima R., Zhu J., Xu M., Sato M., Watanabe S., Kanazawa A., Liu B., Kong F., Yamada T., Abe J. A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a flowering locus T ortholog. BMC Plant Biol., 2016, 16: 20 CrossRef
  70. Liu B., Kanazawa A., Matsumura H., Takahashi R., Harada K., Abe J. Genetic redundancy in soybean photoresponses associated with duplication of phytochrome A gene. Genetics, 2008,180: 996-1007 CrossRef
  71. Watanabe S., Hideshima R., Xia Z., Tsubokura Y., Sato S., Nakamoto Y., Yamanaka N., Takahashi R., Ishimoto M., Anai T., Tabata S., Harada K. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics,2009, 182: 1251-1262 CrossRef
  72. Watanabe S., Xia Z., Hideshima R., Tsubokura Y., Sato S., Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics,2011, 188: 395-407 CrossRef
  73. Xia Z., Watanabe S., Yamada T., Tsubokura Y., Nakashima H., Zhai H., Anai T., Sato S., Yamazaki T., Lü S., Wu H., Tabata S., Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. PNAS, 2012,109(32): E2155-E2164 CrossRef
  74. Stewart D.W., Cober E.R., Bernard R.L. Modeling genetic effects on the photothermal response of soybean phenological development. Agron. J., 2003,95: 65-70 CrossRef
  75. Seferova I.V., Misyurina T.V., Nikishkina M.A. Ecologo-geographic estimation of biological potential of early varieties in soya north advance. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2007, 5: 42-47(in Russ.).  
  76. Vishnyakova M., Seferova I. Soybean genetic resources for the production in the Non-Chernozem zone of the Russian Federation. Legume perspectives (The journal of the International Legume Society, Novi Sad, Serbia), 2013, 1: 7-9.
  77. Seferova I.V. Maslichnye kul'tury, 2016, 3(167): 101-105 (in Russ.).

 

back