doi: 10.15389/agrobiology.2017.5.928eng

UDC 633.31:631.461.52:577.21

Supported by Russian Science Foundation (grant № 17-16-01095)



M.L. Roumiantseva1, V.S. Muntyan1, M.E. Cherkasova1,
E.E. Andronov1, A.S. Saksaganskaya1, E.A. Dzyubenko2,
N.I. Dzyubenko2, B.V. Simarov1

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail (corresponding author),;
2Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency of Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia,

Roumiantseva M.L.
Muntyan V.S.
Cherkasova M.E.
Andronov E.E.
Saksaganskaya A.S.
Dzyubenko N.I.
Simarov B.V.

Received August 2, 2017


Plant-microbial symbiotic interaction is a unique highly specific biological system for fixing atmospheric nitrogen and its transformation into compounds accessible to living organisms. A fundamentally new approach may be the creation of a system for genetic monitoring of the stability of economically valuable strains in microbioms of agroecosystems. By comparison of the genomic characteristics of symbiotically active strains functionally significant marker sequences could be identified and the basis for genetic monitoring system will be created. In the review, we compared genomic characteristics of the symbiotic active strains obtained on the basis of Sinorhizobium meliloti 425a and SU47 strains, used for production of biologicals. Strain 425a was isolated from alfalfa nodules in the mid-1970s in the Almaty region (Kazakhstan), which is a part of the Central Asian primary center of cultivated plant origin designated by N.I. Vavilov. Strain SU47 was isolated from alfalfa nodules in the late 1930s in Australia, which is the secondary center of the diversity of cultivated plants. Strains CXM1-105 (CXM1) and Rm1021 (Rm2011) are widely applied as a reference strain as they have been used to develop or adapt a wide range of symbiogenetics methods. Genomes of both the original strains and their derivatives consist of a chromosome (SMc) and two megaplasmids (SMa, SMb), and do not contain cryptic plasmids. However CXM1-105 genome, unlike Rm1021 genome, did not contains 508 protein encoding ORFs (open reading frames) of which 242 are located on SMa, 121 are on SMb and 145 are on SM, as it was found using DNA biochips. This indicates significant differences in the structure of all three replicons in the reference strains CXM1-105 and Rm1021. Chromosome of CXM1-105 (CXM1), as well as of 425a did not contain sequences of phage origin (the «genomic islands») described in Rm1021. It was found that 62 ORFs of genomic islands are similar or homologous to those of the members of the same species or genus, as well as of phylogenetically distant bacterial classes. However, in the CXM1-105 chromosome there are sites for the integration of genomic islands (EU196757, EU196758 and EU196759), which are 99-100 % homologous to appropriate sequences of Rm1021 (Rm2011). We studied the occurrence of S. meliloti strains harboring type SMcRm1021 or SMcCXM1-105 chromosome (presence or absence of genomic islands, respectively) in native populations. The significant prevalence of strains inherited SMcRm1021 was shown for the area, belonging to the Middle-Asian gene center of cultivated plants, while strains harboring the chromosomal type SMcCXM1-105 were dominant in the area of extremely saline soils next to Aral Sea area (P < 0.05). Consequently, the presence of additional «foreign sequences», which could participate in horizontal gene transfer, is typical of native S. meliloti isolates abundant in the primary center of the diversity of their host plants whereas those sequences are lost under an abiotic stress (salinity) impact. In addition, strains harboring different chromosome types, according to structural differences in the intergenic sequence of rrn-rrl operons, can be referred to divergent clonal lineages. According to the discussed data, it was suggested to consider strain 425a and its derivatives as the model S. meliloti strains to create a system for genetic monitoring of practically valuable strains in agrocenoses.

Keywords: symbiosis, alfalfa, reference strains, Sinorhizobium meliloti, molecular genetic analysis, genomic islands, sites for specific integration, accessory genome.


Full article (Rus)

Full text (Eng)



  1. Mishustin E.N., Shil'nikova V.K. Kluben'kovye bakterii i inokulyatsionnyi protsess [Root-nodule bacteria and inoculation]. Moscow, 1973 (in Russ.).
  2. Bianco C., Defez R. Soil bacteria support and protect plants against abiotic stresses. In: Abiotic stress in plants — mechanisms and adaptations. A. Shanker, B. Venkateswarlu (eds.), InTech, Croatia, 2011 CrossRef
  3. Tikhonovich I.A., Andronov E.E., Borisov A.Yu. Dolgikh E.A., Zhernakov A.I., Zhukov V.A., Provorov N.A., Rumyantseva M.L., Simarov B.V. Genetika, 2015, 51(9): 973-990 CrossRef (in Russ.).
  4. Khotyanovich A.V. Metody kul'tivirovaniya azotfiksiruyushchikh bakterii, sposoby polucheniya i primeneniya preparatov na ikh osnove [Nitrogen fixing bacteria: culture, biologival production and use]. Leningrad, 1991 (in Russ.).
  5. Mikrobiologiya /Pod redaktsiei E.N. Mishustina, V.T. Emtseva [Microbiology. E.N. Mishustin, V.T. Emtsev (eds.)]. Moscow, 1987 (in Russ.).
  6. Sadanov A.K., Gavrilova N.N., Dadonova T.N., Ratnikova I.A. Izvestiya Natsional'noi akademii nauk Respubliki Kazakhstan. Seriya biologicheskaya i meditsinskaya, 2015, 1: 115-124 (in Russ.).
  7. Lopez-Guerrero M.G., Ormeno-Orrillo E., Acosta J.L., Mendoza-Vargas A., Rogel M.A., Ramirez M.A., Rosenblueth M., Martinez-Romero J., Martinez-Romero E. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid, 2012, 68(3): 149-158 CrossRef
  8. Kajic S., Hulak N., Sikora S. Environmental stress response and adaptation mechanisms in Rhizobia. Agriculturae Conspectus Scientificus, 2016, 81(1): 15-19.
  9. Galardini M., Mengoni A., Brilli M., Pini F., Fioravanti A., Lucas S., Lapidus A., Cheng J.F., Goodwin L., Pitluck S., Land M., Hauser L., Woyke T., Mikhailova N., Ivanova N., Daligault H., Bruce D., Detter C., Tapia R., Han C., Teshima H., Mocali S., Bazzicalupo M., Biondi E.G. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics, 2011, 12: 235 CrossRef
  10. Schneiker-Bekel S., Wibberg D., Bekel T., Blom J., Linke B., Neuweger H., Stiens M., Vorhölter F.J., Weidner S., Goesmann A., Pühler A., Schlueter A. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. Journal of Biotechnology, 2011, 155(1): 20-33 CrossRef
  11. Ivanov L.A. Zemledelie, 2014, 3: 25-29 (in Russ.).
  12. Penttinen P., Terefework Z., Lindstroem K., Greco D., Auvinen P., Muntyan V., Roumiantseva M., De Lajudie P., Becker A. Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair. Journal of Basic Microbiology, 2016, 56(6): 680-685 CrossRef
  13. Zaretskaya A.N. Mikrobiologiya, 1976, 45(5): 873-877 (in Russ.).
  14. Fedorov S.N. Poluchenie mutantov kluben'kovykh bakterii lyutserny s izmenennymi simbioticheskimi svoistvami pod deistviem UF-izlucheniya. Avtoreferat kandidatskoi dissertatsii [UV-induced mutants of alfalfa-nodulating bacteria with specific properties/ PhD Thesis]. Leningrad, 1987 (in Russ.).
  15. Geddes B.A., Oresnik I.J. The mechanism of symbiotic nitrogen fixation. In: The mechanistic benefits of microbial symbionts. C.J. Hurst (ed.). Springer International Publishing, Switzerland, 2016 CrossRef
  16. Bolton J.L. Alfalfa: botany, cultivation and utilization. Interscience Publishers, NY, 1962.
  17. Vavilov N.I. Trudy po prikladnoi botanike, genetike i selektsii, 1926, 16(2): 3-248 (in Russ.).
  18. Sinskaya E.N. Istoricheskaya geografiya kul'turnoi flory [Historical geography of cultivated flora]. Leningrad, 1969 (in Russ.).
  19. Dzyubenko N.I., Dzyubenko E.A. V sbornike: Problemy evolyutsii i sistematiki kul'turnykh rastenii [Evolution and systematics of cultivated plants]. St. Petersburg, 2014: 19-20 (in Russ.).
  20. Zakharov-Gezekhus I.A. Nikolai Ivanovich Vavilov: v kontekste epokhi [Nikolai Vavilov: the epochal context]. Moscow, 2012 (in Russ.).
  21. Ivanov A.I. Lyutserna [Alfalfa]. Moscow, 1980 (in Russ.).
  22. Eardly B.D., Materon L.A., Smith N.H., Johnson D.A., Rumbaugh M.D., Selander R.K. Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl. Environ. Microbiol., 1990, 56(1): 187-194.
  23. MacKinnon P.A., Robertson J.G., Scott D.J., Hale C.N. Legume inoculant usage in New Zealand. Journal of Experimental Agriculture, 1977, 5(1): 35-39 CrossRef
  24. Smith R.S., Thorne S., Randall R. Rhizobia inoculants for various leguminous species. Nitragin Brand Inoculants Technical Bulletin, 1988, Iss. 102: 8.
  25. Keller M., Roxlau A., Weng W.M., Schmidt M., Quandt J., Niehaus K., Jording D., Arnold W., Puehler A. Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol. Plant-Microbe Interact., 1995, 8(2): 267-77 CrossRef
  26. Bradic M., Sikora S., Redzepovic S., Stafa Z. Genetic identification and symbiotic efficiency of an indigenous Sinorhizobium meliloti field population. Food Technology and Biotechnology, 2003, 41(1): 69-75.
  27. Troyan T.N. Formirovanie effektivnogo bobovo-rizobial'nogo simbioza i ego rol'. Avtoreferat kandidatskoi dissertatsii [Effecive rhizibium-legume symbiosis: formation and the role. PhD Thesis]. Kaliningrad, 2010 (in Russ.).
  28. Provorov N.A. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 1985, 20(3): 34-46 (in Russ.).
  29. Terpolilli J.J., O'Hara G.W., Tiwari R.P., Dilworth M.J., Howieson J.G. The model legume Medicago truncatula A17 is poorly matched for N2 fixation with the sequenced microsymbiont Sinorhizobium meliloti 1021. New Phytologist, 2008, 179(1): 62-66 CrossRef
  30. Sharypova L.A., Pretorius-Guth I.-M., Simarov B.V., Puehler A. Genetic improvement of Rhizobium strains. In: The nitrogen fixation and its research in China. G.F. Hong (ed.). Springer-Verlag, Berlin, 1992: 266-285 CrossRef
  31. Simarov B.V., Aronshtam A.A., Novikova N.I., Bazhenova O.V., Provorov N.A., Sharypova L.A. Geneticheskie osnovy selektsii kluben'kovykh bakterii /Pod redaktsiei B.V. Simarova, A.A. Aronshtama, N.I. Novikovoi. L., 1990 (in Russ.).
  32. Selbitschka W., Arnold W., Jording D., Kosier B., Toro N, Puehler A. The insertion sequence element ISRm2011-2 belongs to the IS630-Tc1 family of transposable elements and is abundant in Rhizobium meliloti. Gene, 1995, 163(1): 59-64 CrossRef
  33. Roumiantseva M.L., Andronov E.E., Sharypova L.A., Dammann-Kalinowski T., Keller M., Young J.P., Simarov B.V. Diversity of Sinorhizobium meliloti from the Central Asian alfalfa gene center. Appl. Environ. Microbiol., 2002, 68(9): 4694-4697. CrossRef
  34. Pobigaylo N., Wetter D., Szymczak S., Schiller U., Kurtz S., Meyer F., Nattkemper T.W., Becker A. Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti. Appl. Environ. Microbiol., 2006, 72(6): 4329-4337 CrossRef
  35. Serrania J., Johner T., Rupp O., Goesmann A., Becker A. Massive parallel insertion site sequencing of an arrayed Sinorhizobium meliloti signature-tagged mini-Tn5 transposon mutant library. J. Biotechnol., 2017, 257: 9-12 CrossRef
  36. Rumyantseva M.L., Simarov B.V., Onishchuk O.P., Andronov E.E., Chizhevskaya E.P., Belova V.S., Kurchak O.N., Muntyan A.N., Rumyantseva T.B., Zatovskaya T.V. Biologicheskoe raznoobrazie kluben'kovykh bakterii v ekosistemakh i agrotsenozakh. Teoreticheskie osnovy i metody /Pod redaktsiei M.L. Rumyantsevoi, B.V. Simarova [Biodiversity of nodulating bacteria in ecosystems and agrocoenoses. Theoretial aspects and methodology. M.L. Rumyantseva, B.V. Simarov (eds.)]. St. Petersburg, 2011 (in Russ.).
  37. Onishchuk O.P., Sharypova L.A., Kurchak O.N., Bekker A., Simarov B.V. Genetika, 2005, 41(12): 1617-1623 (in Russ.).
  38. Simarov B.V., Sharypova L.A., Chesnokova O.N., Onishchuk O.P., Kuchko V.V. Genetika, 1990, 26(4): 630-635 (in Russ.).
  39. Sharypova L.A., Yurgel S.N., Simarov B.V., Keller M., Puehler A., Becker A. The eff-482 locus of Sinorhizobium meliloti CXM1-105 that influences symbiotic effectiveness consists of three genes encoding an endoglycanase, a transcriptional regulator and an adenylate cyclase. Mol. Gen. Genet., 1999, 261(6): 1032-1044 CrossRef
  40. Chizhevskaya E.P., Krol' E.A., Onishchuk O.P., Sagulenko E.A., Fomina-Eshchenko Yu.G., Simarov B.V., Sharypova L.A. Genetika, 1998, 34(9): 1220-1227 (in Russ.).
  41. Rumyantseva M.L., Muntyan V.S. Mikrobiologiya, 2015, 84(3): 263-280 CrossRef (in Russ.).
  42. Krol E., Becker A. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol. Gen. Genet., 2004, 272(1): 1-17 CrossRef
  43. Sharypova L., Andronov E., Krol E., Becker A., Saal B., Wegener C. Untersuchungen der bakteriellen Diversität mittels Oligonukleotid-Microarrays. BioSpektrum, 2006, 12(1): 106-108.
  44. Biondi E.G., Tatti E., Comparini D., Giuntini E., Mocali S., Giovannetti L., Bazzicalupo M., Mengoni A., Viti C. Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype MicroArray analysis. Appl. Environ. Microbiol., 2009, 75(16): 5396-404 CrossRef
  45. Rumyantseva M.L. Genetika, 2009, 45(9): 1157-1172 (in Russ.).
  46. Belova-Muntyan V.S., Simarov B.V., Rumyantseva M.L. Materialy VII Moskovskogo mezhdunarodnogo kongressa «Biotekhnologiya: sostoyanie i perspektivy razvitiya». Moscow, 2013, tom 2: 363-364 (in Russ.).
  47. Saksaganskaya A.S., Subbotina A.R., Cherkasova M.E., Muntyan V.S., Rumyantseva M.L. Tezisy dokladov IX Mezhdunarodnoi nauchnoi konferentsii «Mikrobnye biotekhnologii: fundamental'nye i prikladnye aspekty» [Proc. IXInt. Conf. «Microbil biotechnologies: fundamental aspects and practice]. Minsk, 2015: 48-49 (in Russ.).
  48. Rumyantseva M.L., Muntyan V.S., Mengoni A., Simarov B.V. Genetika, 2014, 50(4): 400-412 CrossRef (in Russ.).
  49. Langille M.G., Hsiao W.W., Brinkman F.S. Detecting genomic islands using bioinformatics approaches. Nature Rev. Microbiol., 2010, 8(5): 373-382 CrossRef
  50. Hudson C.M., Lau B.Y., Williams K.P. Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucl. Acids Res., 2015, 43: 48-53 CrossRef
  51. Rumyantseva M.L. Tezisy dokladov Vserossiiskoi konferentsii «50 let VOGiS: uspekhi i perspektivy». Moscow, 2016: 52 (in Russ.).
  52. Muntyan V.S., Cherkasova M.E., Andronov E.E., Simarov B.V., Rumyantseva M.L. Genetika, 2016, 52(8): 1126-1133 CrossRef (in Russ.).
  53. Ferrieres L., Francez-Charlot A., GouzyJ., Rouille S., Kahn D. FixJ-regulated genes evolved through promoter duplication in Sinorhizobium meliloti. Microbiology, 2004, 150(7): 2335-2345 CrossRef
  54. Martinez-Hidalgo P., Hirsch A.M. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes, 2017, 1(2): 70-82.