doi: 10.15389/agrobiology.2017.5.940eng

UDC 635.24:631.522/.524

 

BREEDING OF JERUSALEM ARTICHOKE WITH THE DESIRED TRAITS FOR DIFFERENT DIRECTIONS OF USE: RETROSPECTIVE,
APPROACHES, AND PROSPECTS (review)

C. Breton1, S.D. Kiru2, A. Bervillé3, N.Yu. Anushkevich2

1Institut des Sciences de l’Evolution de Montpellier (ISE-M), UMR CNRS 5554, Place E. Bataillon, cc63, Bât 22, 1er étage, F-34095 Montpellier Cedex 5, France,
e-mail catherine.breton02@univ-montp2.fr (corresponding author);
2Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Federal Agency of Scientific Organizations, 42-44, ul. Bol’shaya Morskaya, St. Petersburg, 190000 Russia,
e-mail s.kiru@vir.nw.ru, topinam2012@yandex.ru
3Institut national de la recherche agronomique (INRA), UMR DIAPC 1097, 2 place Viala, Bât 33, F-34060, Montpellier cedex 2,
e-mail andre.jp.berville@orange.fr

ORCID:
Breton C. orcid.org/0000-0002-3389-1861
Kiru S.D. orcid.org/0000-0002-8648-3837
Bervillé A. orcid.org/0000-0002-7426-2287
Anushkevich N.Yu. orcid.org/0000-0001-6125-6139

Received June 11, 2017

 

In the last decade a new direction has been widely developed for industrial and food use of Jerusalem artichoke (Helianthus tuberosus L.). At the same time significantly expanded the cultivated areas of this crop, especially in Asian countries. Relevant extension studies therefore becomes focused on breeding of new varieties, including those with high content of certain biochemical components in tubers or leaves and stems. The future of J. artichoke as energy source for biofuels, as well as a source of fiber, sugar substitute for people, who require insulin is very promising. Despite the presence of a large number of varieties (more than 300) of J. artichoke in different countries, its genetic diversity is not so wide (P.P. Wangsomnuk et al., 2011; R. Puttha et al., 2013), because all breeding varieties are based on intraspecific hybridization, or as result of selection of seedlings from self-pollination. In addition, due to the very low self-fertility, the breeding of J. artichoke and its generative reproduction has yet little success. The experience on multi-year studies of J. artichoke diversity and breeding work in many countries shows, that the effect of high-directed breeding on desired traits can be achieved only through inter-specific hybridization. The crossing J. artichoke with sunflower, allows transmitting at new generation the characters and properties of the initial forms and improved through heterosis (L. Natali et al., 1998; C. Breton et al., 2010). Thus, we can say with great certainty about reality of J. artichoke breeding to achieve the desired traits using inter-specific hybridization. The inter-specific hybridization of artichoke J. artichoke with sunflower (Helianthus annuus L.) can be successfully use as a breeding method for creation of varieties with the desired traits for specific uses. Given the current demand for different directions of use products from J. artichoke, it is likely that the breeding of J. artichoke will be focused on creation of special varieties - for food, for medicinal purposes, for processing in the inulin, purposes of animal feeding, for the production of bioenergy, technical and environmental goals etc. (M. Baldini et al., 2004; G.J. Seiler et al., 2004; R. Puttha et al., 2012; S. Favale et al., 2014).  We can say with confidence that there are enough initial material for all areas of breeding. For these, it is necessary to extend the researches to find the possibilities of using the existing gene pool of artichoke in many gene banks. Today, there are a different of modern methods for this, including molecular genetics. One has to stress for breeding J. artichoke the importance of molecular genetics technologies towards the existing gene pool of artichoke in many gene banks.

Keywords: Jerusalem artichoke, sunflower, breeding, hybridization, selection, target traits, food and forage use, raw for use, inulin production, bioethanol production.

 

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Serieys H., Souyris I., Gil A., Poinso B., Bervillé A. Diversity of Jerusalem artichoke clones (Helianthus tuberosus L.) from the INRA-Montpellier. Genetic Resources and Crop Evolution, 2010, 8: 1207-1215.
  2. Diederichsen A. Phenotypic diversity of Jerusalem artichoke (Helianthus tuberosus L.) germplasm preserved by the Canadian Genebank. Helia, 2010, 33(53): 1-16 CrossRef
  3. Kiru S., Nasenko I. Use of genetic resources from Jerusalem artichoke collection of N. Vavilov institute in breeding for bioenergy and health security. Agronomy Research, 2010, 8: 625-632.
  4. Wangsomnuk P.P., Khampa S., Wangsomnuk P., Jogloy S., Mornkham T, Ruttawat B., Patanothai A., Fu Y.B. Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genetics and Molecular Research, 2011, 10(4): 4012-4025 CrossRef
  5. Wangsomnuk P.P., Khampa S., Jogloy S., Srivong T., Patanothai A., Fu Y.-B. Assessing genetic structure and relatedness of Jerusalem artichoke (Helianthus tuberosus L.) germplasm with RAPD, ISSR and SRAP markers. American Journal of Plant Sciences, 2011, 2: 753-764 CrossRef
  6. Atlagic J. Pollen fertility in some Helianthus L. species and their F1 hybrids with the cultivated sunflower. Helia, 1990, 13: 47-54.
  7. Faure N., Serieys H., Bervillé A. Estimation of the risk of gene flow from cultivated sunflower to volunteer and wild Helianthus species in Europe. Agricultures & Environment, 2002, 89: 183-190.
  8. Wangsomnuk P.P., Puangsomlee P., Khampa K., Jogloy S. Exogenous supplementation of growth regulators and temperature improves germination of dormant Jerusalem artichoke (Helianthus tuberosus L.) seeds under in vitro and in vivo conditions. Journal of Applied Biological Sciences, 2015, 9(2): 23-30.
  9. Eldridge S., Slaski J.J., Quandt J. Vidmar J.J. Jerusalem artichoke as a multipurpose srop. Proc. Annual Meeting of the Canadian Society of Agronomy (abstracts). Edmonton, Alberta, 2005 July. Available  http://agronomycanada.com/download/meetings/past_meetings/
    2005%20CSA%20Annual%20Meeting%20Abstracts.pdf. No date.
  10. Nemeth G., Izsaki Z. Macro- and micro-element content and uptake of Jerusalem artichoke (Helianthus tuberosus L.). Cereal Research Communications, 2006, 34: 597-600.
  11. Favale S., Ciolfi G., Moretti S. Optimization of bioethanol production from Jerusalem artichoke powder and fresh tubers. Global Advanced Research Journal of Microbiology, 2014, 3(5): 72-77.
  12. Terzic S., Atlagic J. Nitrogen and sugar content variability in tubers of Jerusalem artichoke (Helianthus tuberosus). Genetika, 2009, 41: 289-295 CrossRef
  13. Geng-Mao Z., Liu Z.-P., Ming-Da C., Shi-Wei G. Soil properties and yield of Jerusalem artichoke (Helianthus tuberosus L.) with seawater irrigation in North China plain. Pedosphere, 2008, 18: 195-202 CrossRef
  14. Kays S.J., Nottingham S.F. Biology and chemistry of Jerusalem artichoke (Helianthus tuberosus L.). CRS Press, Boca Raton, Florida, 2008.
  15. Curt M.D., Aguado P.I., Sanz M., Sanches G., Fernandes J. On the use of stalks of Helianthus tuberosus L. for the bio-ethanol production. Proc. Int. Conf. on Industrial Crops and Rural Development (abstracts). Mursia, Spain, 2005. Available  http://www.aaic.org/past-meeting-program-and-abstracts.html. No date.
  16. Thanonkeo P., Thanonkeo S., Charoensuk K., Yamada M. Ethanol production from Jerusalem artichoke (Helianthus tuberosus L.) by Zymomonas mobilis TISTR548. African Journal of Biotechnology, 2011, 10(52): 10691-10697 CrossRef
  17. Park J.M., Kim C.H. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces maxianus CBS1555. Appl. Biochem. Biotechnol., 2013, 169: 1531-1545 CrossRef
  18. Ge X.Y., Zhang W.G. A shortcut to the production of high ethanol concentration from Jerusalem artichoke tubers. Food Technology and Biotechnology, 2005, 43: 241-246.
  19. Szambelan K., Nowak J., Jelen H. The composition of Jerusalem artichoke (Helianthus tuberosusL.) spirits obtained from fermentation with bacteria and yeasts. Engineering in Life Sciences, 2005, 5: 68-71 CrossRef
  20. Hill J., Nelson E., Tilman D., Polasky S., Tiffany D. Environmental, economic and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS USA, 2006, 103: 11206-11210 CrossRef
  21. Stolzenburg K. Topinambur (Helianthus tuberosus L.) Rohstoff fur die Ethanolgewwinung. Forchheim, 2006.
  22. Izdebski W. Jerusalem artichoke — potential and possibilities of use in power industry. TEKA Kom. Mot. Energ. Roln. — OL PAN [TEKA. Commission of motorization and power industry in agriculture, Polish Academy of Sciences Branch in Lublin], 2009, 9: 93-98.
  23. Li L., Li L., Wang Y., Du Y., Qin S. Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol. Lett., 2013, 35: 471-477 CrossRef
  24. Saengkanuk A., Nuchadomrong S., Jogloy S., Patanothai A., Srijaranai S. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Eur. Food Res. Technol., 2011, 233: 609-616 CrossRef
  25. Kocsis L., Liebhard P., Praznik W. Einfluss des Erndetermins auf Knollegrosse und Trokensubstanzgehalt sowie Inulin- und Zuckerertrag bei Topinabursorten unterschiedcher Reifzeit (Helianthus tuberosus L.) in semiariden Produktionsgebiet Osterreichs. Pflanzenbauwissenschaften, 2008, 12(1): 8-21.
  26. Puttha R., Jogloy S., Wangsomnuk P.P., Srijaranai S., Kesmala T., Patanothai A. Genotypic variability and genotype by environment interactions for inulin content of Jerusalem artichoke germplasm. Euphytica, 2012, 183: 119-131 CrossRef
  27. Puangbut D., Jogloy S., Vorasoot N., Srijaranai S., Kesmala T., Holbrook C.C., Patanothai A. Influence of planting date and temperature on inulin content in Jerusalem artichoke (Helianthus tuberosus L.). Australian Journal of Crop Science, 2012, 6: 1159-1165.
  28. Puangbut D., Jogloy S., Vorasoot N., Patanothai A. Growth and phenology of Jerusalem artichoke (Helianthus tuberosus L.). Pakistan Journal of Botany, 2015, 47(6): 2207-2214.
  29. Puangbut D., Jogloy S., Vorasoot N., Srijaranai S., Holbrook C.C., Patanothai A. Variation of inulin content, inulin yield, and water efficiency for inulin yield in Jerusalem artichoke genotypes under different water regimes. Agricultural Water Management, 2015, 152: 142-150 CrossRef
  30. Ruttanaprasert R., Jogloy S., Vorasoot N., Kesmala T., Rameshwar S.K. Holbrook C.C., Patanothai A. Effect of water stress on total biomass, tuber yield, harvest index and water efficiency in Jerusalem artichoke. Agricultural Water Management, 2016, 166: 130-138 CrossRef
  31. Saengthongpinit W., Sajjaanantakul T. Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biology and Technology, 2005, 37(1): 93-100 CrossRef
  32. Nazarenko M.N., Barkhatova T.V., Kozhukhova M.A., Burlakova E.V. Izmenenie inulina v klubnyakh topinambura pri khranenii. Nauchnyi zhurnal Kubanskogo GAU, 2013, 94(10). Available http://cyberleninka.ru/article/n/izmenenie-inulina-v-klubnyah-topinambura-pri-hranenii. Accessed Octoder 23, 2017 (in Russ.)
  33. Barkhatova T.V., Nazarenko M.N., Kozhukhova M.A., Khripko I.A. Obtaining and identification of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Food and Raw Materials, 2005, 3(2): 13-22.
  34. Breton C., Serieys H., Bervillé A. Gene transfer from wild Helianthus to sunflower: topicalities and limits. Oléagineux, Corp Gras, Lipids, 2010, 13: 104-114 CrossRef
  35. Sossey-Alaoui K., Serieys H., Tersac M., Lambert P., Schilling E., Griveau Y., Kaan F., Bervillé A. Evidence for several genomes in Helianthus. Theor. Appl. Genet., 1998, 97: 422-430 CrossRef
  36. Kays S.J., Kultur F. Genetic variation in Jerusalem artichoke (Helianthus tuberosus L.) flowering date and duration. HortScience, 2005, 40: 1675-1678.
  37. Pas'ko N.M. Trudy po prikladnoi botanike, selektsii i genetike, 1974, 53(1): 231-246 (in Russ.)
  38. Shchibrya N.A. V knige: Teoreticheskie osnovy selektsii rastenii. Tom 3 [In: Theoretial basis for plant beeding. V. 3]. Moscow-Leningrad, 1937: 162-175 (in Russ.)
  39. Davydovich S.S. Selektsiya i semenovodstvo, 1936, 6: 20-26 (in Russ.)
  40. Pas'ko N.M. Nauchnye trudy Maikopskoi opytnoi stantsii VIR, 1973, Vypusk 7: 78-91 (in Russ.)
  41. Puttha R., Jogloy S., Suriham B., Wangsomnuk P.P., Kesmala T., Patanothai A. Variations in morphological and agronomic traits among Jerusalem artichoke (Helianthus tuberosus L.) accessions. Genet. Resour. CropEvol., 2013, 60(2): 731-746 CrossRef
  42. Atlagic J., Dozet B., Skoric D. Meiosis and pollen viability in Helianthus tuberosus L. and its hybrids with cultivated sunflower. Plant Breeding, 111: 318-324 CrossRef
  43. Janket A., Vorasoot N., Ruttanaprasert R., Kesmala T., Jogloy S. Genotypic variability of yield components and crop maturity in Jerusalem artichoke germplasm. SABRAO Journal of Breeding and Genetics, 2016, 48(4): 474-490.
  44. Ruttanaprasert R.,  Banterng P., Jogloy S., Vorasoot N., Kesmala T., Kanvar R.S., Holbrook C.C., Patanothai A. Genotypic variability for tuber yield, biomass and drought tolerance in Jerusalem artichoke germplasm. Turkish Journal of Agriculture and Forestry, 2014, 38(4): 570-580 CrossRef 
  45. Sawichka B., Michalek W. Evaluation and productivity of Helianthus tuberosus L. in the conditions of Central-East Poland. Electronic Journal of Polish Agricultural Universities, 2005, 8(3): #42. Available http:/www.ejpau.media.pl/volume8/issue3/art-42.html. No date.
  46. Rodrigues M.A., Sousa L., Cabanas J.E., Arrobas M. Tuber yield and leaf mineral composition of Jerusalem artichoke (Helianthus tuberosus L.) grown under different cropping practices. Spanish Journal of Agricultural Research, 2007, 5: 545-553.
  47. Frese L. Production and utilization of inulin. In: Cultivation and breeding of fructans. M. Suzuki, N.J. Shatterton (eds.). CRC Press, London, 1993: 303-315.
  48. Baldini M., Danuso F., Turi M., Vanozzi G.P. Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind. Crops Prod., 2004, 19(1): 25-40 CrossRef
  49. Brkjaca J., Bodroza-Solarov M., Krulj J., Mikic A., Jeromela A.M.  Quantification of inulin content in selected accessions of Jerusalem artichoke (Helianthus tuberosus L.). Helia, 2014, 37: 105-112 CrossRef
  50. Seiler G.J., Campbel L.J. Genetic variability for mineral element concentration of wild Jerusalem artichoke forage. Crop Sci., 2004, 44: 289-292 CrossRef
  51. Le Page-Digivry M.-T., Barthe P., Garello G. Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant Physiology, 1990, 92(4): 1164-1168 CrossRef
  52. Maiti R.C., Vidyasagar P., Shahapur S.G., Ghosh S.K., Seiler G.J. Development and standardization of a simple technique for breaking seed dormancy in sunflower (Helianthus annuus L.). Helia, 2006, 29(45): 117-126 (doi: 10.2298/HEL0645117M).
  53. Sennoi R., Jogloy S., Saksirirat W., Patanothai A. Pathogenicity test of Sclerotium rolfsii, a causal agent of Jerusalem artichoke (Helianthus tuberosus L.) stem rot. Asian Journal of Plant Sciences, 2010, 9(5): 281-284 CrossRef
  54. Pas'ko N.M. Byulleten' VIR, 1980, 105: 85-88 (in Russ.) 
  55. Marchenko I.I. V sbornike: Otdalennaya gibridizatsiya rastenii. Moscow, 1960: 379-395 (in Russ.)
  56. Natali L., Giordani T., Polizzi E., Pugliesi C., Fambrini M., Cavallini A. Genomic alterations in the inter-specific hybrid Helianthus annuus x Helianthus tuberosus. Theoretical and Applied Genetics, 1998, 97: 1240-1247.
  57. Davydovich S.S. Selektsiya i semenovodstvo, 1947, 1: 33-37 (in Russ.) 
  58. Davydovich S.S. Zemlyanaya grusha. Moscow, 1957 (in Russ.)
  59. Shchibrya N.A. V knige: Geterozis v rastenievodstve. Stavropol', 1966: 83-101 (in Russ.)
  60. Pas'ko N.M. Materialy konferentsii molodykh uchenykh. Adygeisk, 1971, tom 2: 172-177 (in Russ.)

 

back