doi: 10.15389/agrobiology.2017.5.1012eng

UDC 633.358:631.461.5:57.052:577.112

Acknowlegdgements:
Supported by Russian Science Foundation (grant № 16-16-10043)

 

FEATURES OF PROTEIN ISOLATION FOR PEA Pisum sativum L.
ROOT PROTEOME ANALYSIS DURING SYMBIOSIS WITH RHIZOBIA

A.N. Kirienko, I.V. Leppyanen, E.S. Gribchenko, E.A. Dolgikh

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail dol2helen@yahoo.com (corresponding author)

ORCID:
Kirienko A.N. orcid.org/0000-0002-2519-306X
Leppyanen I.V. orcid.org/0000-0002-2158-0855
Gribchenko E.S. orcid.org/0000-0002-1538-5527
Dolgikh E.A. orcid.org/0000-0003-3433-2102

Received November 30, 2016

 

Pea Pisum sativum L. is a convenient model to study the molecular-genetic mechanisms of nitrogen-fixing symbiosis establishment with rhizobia, because a representative collection of mutants, blocked at different stages of symbiosis development was obtained. A comparative analysis of the proteomes of the wild type cultivars and lines of peas and mutants can be a useful approach for carrying out studies aimed on at identification and further analysis of regulators controlling the formation of nitrogen-fixing nodules. However as the review of modern literary data shows, studies of differential proteome changes in pea roots during symbiosis are almost not performed. Sample preparation is a key stage in proteomic studies. The quality of gels obtained after 2-D electrophoresis and the opportunity of following analysis depend on protein isolation efficiency from the tissues and purification from accompanying substances. Our work is aimed on finding the most effective method of protein isolation from Pisum sativum roots inoculated with rhizobia, which might be applied for carrying the 2-D electrophoresis. Special requirements aimed at separation stages minimization important for protein stability, as well as the efficient removal of contaminants which can negatively affect the quality of separation and the subsequent evaluation of qualitative and quantitative changes in the protein synthesis are necessary for proteomics. Analysis of data revealed a number of possible methods for the protein isolation from plant tissues. A comparison of three methods of the proteins isolation using the commercial protocol from Bio-Rad; the method based on treatment with phenol and ammonium acetate as well as the trichloroacetic acid application. Pea plants of cv. Frisson were used in our work, the strain Rhizobium leguminosarum bv. viciae CIAM1026 was used for inoculation. After protein isolation from the wild-type cv. Frisson roots of pea seedlings inoculated with rhizobia (1 day after inoculation) using three methods and consequent 2-D electrophoresis, it was shown that the best results are achieved using the method with phenol following by ammonium acetate precipitation. The gels were analyzed for trace presence that made it difficult to search for different proteins, the efficiency of total protein isolation and possible degradation products. Using this selected method, the differential 2-D electrophoresis of extracted proteins was carried out with fluorescent Cy2 and Cy5 labels based on isoelectric focusing of proteins using strips with a pH range of 3-10 and subsequent separation in a polyacrylamide (PAGE) gel. The analysis showed that when proteins were isolated using phenol and ammonium acetate, it was possible to obtain rather representative proteomes of the roots of pea seedlings. The differential 2-D electrophoresis allowed to see the differences between the control samples (non-inoculated roots) and the samples inoculated with rhizobia (inoculated roots). This method may be recommended for further proteomic studies in pea roots.

Keywords: Pisum sativum L., pea, legume rhizobium symbiosis, proteomics analysis, receptors, Nod factors, legumes, rhizobia.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Genre A., Russo G. Does a common pathway transduce symbiotic signals in plant—microbe interactions? Front Plant Sci., 2016, 7: 96 CrossRef
  2. Young J., Kambere M., Trask B., Lane R. Divergent V1R repertoires in five species: Amplification in rodents decimation in primates, and a surprisingly small repertoire in dogs. Genome Res., 2005, 15: 231-240 CrossRef
  3. Cook D., Dreyer D., Bonnet D., Howell M., Nony E., VandenBosch K. Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell, 1995, 7: 43-55 CrossRef
  4. Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., Morieri G., Mysore K.S., Wen J., Oldroyd G.E., Downie J.A., Murray J.D. The root hair «infectome» of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for Auxin signaling in rhizobial infection. Plant Cell, 2014, 26(12): 4680-4701 CrossRef
  5. van Zeijl A., Op den Camp R.H., Deinum E.E., Charnikhova T., Franssen H., Op den Camp H.J., Bouwmeester H., Kohlen W., Bisseling T., Geurts R. Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol. Plant., 2015, 8: 1213-1226 CrossRef
  6. Larrainzar E., Riely B.K., Kim S.C., Carrasquilla-Garcia N., Yu H.J., Hwang H.J., Oh M., Kim G.B., Surendrarao A.K., Chasman D., Siahpirani A.F., Penmetsa R.V., Lee G.S., Kim N., Roy S., Mun J.H., Cook D.R. Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiol., 2015, 169: 233-265 CrossRef
  7. Saalbach G., Erik P., Wienkoop S. Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics, 2002, 2: 325-337 CrossRef
  8. Castillejo M.Á., Curto M., Fondevilla S., Rubiales D., Jorrín J.V. Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J. Agric. Food Chem., 2010, 58(24): 12822-1283 CrossRef
  9. Castillejo M.Á., Fernández-Aparicio M., Rubiales D. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J. Exp. Bot., 2011, 63(1): 107-119 CrossRef
  10. Schiltz S., Gallardo K., Huart M., Negroni L., Sommerer N., Burstin J. Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol., 2004, 135: 2241-2260 CrossRef
  11. Bourgeois M., Jacquin F., Savois V., Sommerer N., Labas V., Henry C., Burstin J. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics, 2009, 9: 254-271 CrossRef
  12. Bourgeois M., Jacquin F., Cassecuelle F., Savois V., Belghazi M., Aubert G., Quillien L., Huart M., Marget P., Burstin J. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies identifies loci determining seed protein composition. Proteomics, 2011, 9: 1581-1594 CrossRef
  13. Dumont E., Bahrman N., Goulas E., Valot B., Sellier H., Hilbert J.L., Lejeune-Hénaut I., Delbreil B. A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci., 2011, 180: 86-98 CrossRef
  14. Tarchevskii I.A., Yakovleva V.G., Egorova A.M. Biokhimiya, 2010, 75(5): 689-697 (in Russ.).
  15. Tarchevskii I.A., Egorova A.M. Fiziologiya rastenii, 2015, 62(6): 883-895 (in Russ.).
  16. Yakovleva V.G., Egorova A.M., Tarchevsky I.A. Doklady Biochemistry and Biophysics, 2013, 449: 90-93 CrossRef (in Russ.).
  17. Saravanan R.S., Rose J.K.C. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 2004, 4: 2522-2532 CrossRef
  18. Carpentier S.C., Witters E., Laukens K., Deckers R.S., Panis B. Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics, 2005, 5: 2497-2507 CrossRef
  19. Hurkman W.J., Tanaka C.K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol., 1986, 81: 802-806 CrossRef
  20. Westermeier R., Naven T. Proteomics in practice: a laboratory manual of proteome analysis. Wiley-VCH Verlag-GmbH, Weinheim, 2002: 342 CrossRef
  21. van Brussel A.A.N., Tak T., Wetselaar A., Pees E., Wijffelman C.A. Small Leguminosae as test plants for nodulation of Rhizobium leguminosarum and other rhizobia and agrobacteria harbouring a leguminosarum sym-plasmid. Plant Sci. Lett., 1982, 27: 317-325 CrossRef
  22. Isaacson T., Damasceno C.M.B., Saravanan R.S., He Y., Catala C. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols, 2006, 1: 769-774 CrossRef
  23. Freeman W.M., Hemby S.E. Proteomics for protein expression profiling in neuroscience. Neurochem Res., 2004, 29: 1065-1081 CrossRef
  24. Wang W., Scali M., Vignani R., Spadafora A., Sensi E. Protein extraction for two- dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis, 2003, 24: 2369-2375 CrossRef
  25. Rose J.K.C., Bashir S., James J.G., Jahn M.M., Saravanan R.S. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J., 2004, 39: 715-733 CrossRef
  26. Vâlcu C.M., Schlink K. Efficient extraction of proteins from woody plant samples for two-dimensional electrophoresis. Proteomics, 2006, 6: 1599-1605 CrossRef
  27. Görg A., Weiss W., Dunn M.J. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4(12): 3665-3685 CrossRef
  28. Leimgruber R.M., Malone J.P., Radabaugh M.R., LaPorte M.L., Violand B.N., Monahan J.B. Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses. Proteomics, 2002, 2: 135-144 CrossRef
  29. Morris A.C., Djordjevic M.A. Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis, 2001, 22(3): 586-598 CrossRef
  30. Bodzon-Kulakowska A., Bierczynska-Krzysik A., Dylag T., Drabik A., Suder P. Methods for samples preparation in proteomic research. J. Chromatogr. B, 2007, 849: 1-31 CrossRef
  31. Schenkluhn L., Hohnjec N., Niehaus K., Schmitz U., Colditz F. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. J. Proteomics., 2010, 73(4): 753-768 CrossRef
  32. Mijnsbrugge K.V., Meyermans H., Van Montagu M., Bauw G., Boerjan W. Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins. Planta, 2000, 210: 589-598 CrossRef
  33. Mihr C., Braun H.P. Proteomics in plant biology. In: Handbook of proteomics. P. Conn, (ed.). Humana Press, New Jersey, Totowa, 2003: 409-416 CrossRef
  34. Nautrup-Pedersen G., Dam S., Laursen B.S., Siegumfeldt A.L., Nielsen K., Goffard N., Stærfeldt H.H., Friis C., Sato S., Tabata S., Lorentzen A., Roepstorff P., Stougaard J. Proteome analysis of pod and seed development in the model legume Lotus japonicus. J. Proteome Res., 2010, 9(11): 5715-5726 CrossRef
  35. Dam S., Dyrlund T.F., Ussatjuk A., Jochimsen B., Nielsen K., Goffard N., Ventosa M., Lorentzen A., Gupta V., Andersen S.U., Enghild J.J., Ronson C.W., Roepstorff P., Stougaard J. Proteome reference maps of the Lotus japonicus nodule and root. Proteomics, 2013, 14(2-3): 230-240 CrossRef

 

back