doi: 10.15389/agrobiology.2017.5.995eng

UDC 631.461.52:575.1:577.257.065

Acknowlegdgements:
The experiments were carried out using equipment of the ARRIAM Center of Genomic Technologies, Proteomics and Cell Biology.
Supported by Russian Science Foundation, project № 14-26-00094П

 

COMPARATIVE PHYLOGENETIC ANALYSIS OF SYMBIOTIC GENES OF
DIFFERENT NODULE BACTERIA GROUPS USING THE METATREES
METHOD

E.S. Karasev, E.P. Chizhevskaya, B.V. Simarov, N.A. Provorov,
E.E. Andronov

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail evgenii1991.karasev@gmail.com (corresponding author)

ORCID:
Karasev E.S. orcid.org/0000-0003-4240-9587
Chizhevskaya E.P. orcid.org/0000-0002-7715-8696
Provorov N.A. orcid.org/0000-0001-9091-9384
Andronov E.E. orcid.org/0000-0002-5204-262X

Received December 12, 2016

 

We applied modified phylogenetic analysis method of building meta-trees to study the evolutional patterns of various groups of symbiotic genes (nod-genes control the formation of nodules and nif/fix-genes control symbiotic nitrogen fixation). The method consists in the pairwise comparison of topologies and construction combined dendrograms («meta-trees»), where the relative position of the two trees is a measure of corresponding gene phylogenies congruence. Homologues of 18 symbiotic genes (nodABCDIJN, nifABDEHKN, fixABC, fdxB) are present in each test organism (9 strains belong to the genera Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium and Neorhizobium). These genes were selected for the implementation of this method, as well as the gene 16S rRNA as a traditional taxonomic chromosome marker. We constructed and compared phylogenetic trees for all these genes and then calculated the pairwise similarity coefficients for their topologies. According to the obtained data we built a meta-tree, and there were two statistically distinct gene clusters identified within. Cluster 1 includes mainly nif- and fix-genes and cluster 2 — mostly nod-genes, that is related to the data of separate localization of these gene groups in the rhizobial genomes. The exception is the arrangement of nifB and fixC geneswith nodA in cluster 2, as well as co-localization of nodI and nifD in cluster 1. During the identified clusters structure analysis we found strong relationship between the relative gene position and the characteristics of their genome localization in nodule bacteria. Importantly, the differences between clusters 1 and 2 are not expressed less clearly than the differences between nod- and nif/fix-gene groups. It is obvious that clusters 1 and 2 of our meta-tree reflect primarily different mechanisms of nodulation evolution and symbiotic nitrogen fixation associated with the independent origin of the relevant gene groups, and possibly, with their separate horizontal transfer between different groups of rhizobia. Further study of the symbiotic gene evolution in nodule bacteria requires improvements used phylogenetic analysis techniques, including separate analysis meta-tree for rhizobia, representing different stages of symbiosis evolution.

Keywords: phylogenetic analysis, meta-trees, nodule bacteria, symbiotic genes.

 

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Provorov N., Tikhonovich I., Andronov E., Belimov A., Borisov A., Vorob'ev N., Dolgikh E., Zhernakov A., Zhukov V., Kimeklis A., Kopat' V., Kurchak O., Onishchuk O., Safronova V., Sulima A., Chizhevskaya E., Chirak E., Shtark O.  Geneticheskie osnovy evolyutsii bakterii — simbiontov rastenii [Evolution of bacterial symbionts of plants — genetic aspects]. St. Petersburg, 2016 (in Russ.).
  2. Douni Dzh. V knige: Rhizobiaceae [In: Rhizobiaceae]. St. Petersburg, 2002: 417-434 (in Russ.).
  3. Kaminski P., Batut Zh., Boistard P. V knige: Rhizobiaceae [In: Rhizobiaceae]. St. Petersburg, 2002: 465-492 (in Russ.).
  4. Young J., Crossman L., Johnston A. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol., 2006, 7(4): R34 CrossRef
  5. Reeve W., O'Hara G., Chain P. Complete genome sequence of Rhizobium leguminous-arum bv. trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum. Stand Genomic Sci., 2010, 2(1): 66-76 CrossRef
  6. Barnett M., Fisher R., Jones T. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. PNAS USA, 2001, 98(17): 9883-9888 CrossRef
  7. Reeve W., Chain P., O'Hara G. Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand Genomic Sci., 2010, 2(1): 77-86 CrossRef
  8. Kaneko T., Nakamura Y., Sato S. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res., 2002, 9(6): 189-197 CrossRef
  9. Kaneko T., Nakamura Y., Sato S. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res., 2000, 7(6): 331-338 CrossRef
  10. Girard M., Flores M., Brom S. Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli. J. Bacteriol., 1991, 173(8): 2411-2419.
  11. Österman J., March J., Laine P.K. Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors. BMC Genomics, 2014, 15: 500 CrossRef
  12. Khaines M., Finan T. V knige: Rhizobiaceae [In: Rhizobiaceae]. St. Petersburg, 2002: 41-62 (in Russ.).
  13. Göttfert M., Röthlisberger S., Kündig C. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol., 2001, 183(4): 1405-1412 CrossRef
  14. Sullivan J., Ronson C. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. PNAS USA, 1998, 95(9): 5145-5149.
  15. González V., Santamaría R., Bustos P. The partitioned Rhizobium etli genome: Genetic and metabolic redundancy in seven interacting replicons. PNAS USA, 2006, 103(10): 3834-3839 CrossRef
  16. Vorob'ev N., Provorov N. Ekologicheskaya genetika, 2013, 11: 73-85 (in Russ.).
  17. Provorov N., Andronov E. Evolution of root nodule bacteria: reconstruction of the speciation processes resulting from genomic rearrangements in a symbiotic system. Microbiology, 2016, 83(2): 131-139 CrossRef
  18. Nye T. Trees of trees: an approach to comparing multiple alternative phylogenies. Syst. Biol., 2008, 57(5): 785-794 CrossRef
  19. Nye T., Lio P., Gilks W. A nowel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics, 2005, 22(1): 117-119.
  20. Atkinson E., Palcic M., Hindsgaul O., Long S. Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod-factors: NodA is required for an N-acyltransferase activity. PNAS USA, 1994, 91(18): 8418-8422.
  21. John M., Rohrig H., Schmidt J. Rhizobium NodB protein involved in nodulation signal synthesis is chitooligosaccharide deacetylase. PNAS USA, 1993, 90: 625-629.
  22. Debelle F., Rosenberg C., Denarie J. The Rhizobium, Bradyrhizobium and Azorhizobium NodC proteins are homologous to yeast chitin synthases. Mol. Plant-Microbe Interact., 1992, 5: 443-446.
  23. Peck M., Fisher R., Long S. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J. Bacteriol., 2006, 188(15): 5417-5427 CrossRef
  24. Evans I., Downie J. The NodI product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins: nucleotide sequence of nodI and nodJ genes. Gene, 1986, 43: 95-101.
  25. Baev N., Shultze M., Barlier I. Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of nod signal production and bacteroid maturation. J. Bactreriol., 1992, 174(23): 7555-7565.
  26. Putnoky P., Grosskopf E., Cam D. Rhizobium fix-genes mediate at least two communication steps in symbiotic nodule development. J. Cell Biol., 1988, 106: 597-607.
  27. Arnold W., Rump A., Klipp W. Nucleotide sequence of 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumonia. J. Mol. Biol., 1988, 203: 715-738.
  28. Hirch A., Lum M., Downie J. What makes the rhizobia-legume symbiosis so special? Plant Physiol., 2001, 127: 1484-1492 CrossRef
  29. Provorov N., Vorob'ev N. Geneticheskie osnovy evolyutsii rastitel'no-mikrobnogo simbioza [Genetic aspects of plant-microbe symbiosis evolution]. St. Petersburg, 2012 (in Russ.).

 

back