doi: 10.15389/agrobiology.2016.5.636eng

UDC 633.63:631.52:581.3

Supported by the grant of the President of the Russian Federation for the Leading Scientific Schools of Russia (HIII=5282.2014.4 — project «Development of plant reproduction theory as based on integrity and reliability of biosystems. Polyvalent morphogenesis programs and their effective natural and artificial models»).



T.P. Zhuzhzhalova, O.A. Podvigina, V.V. Znamenskaya,
E.N. Vasil’chenko, N.A. Karpechenko, O.A. Zemlyanukhina

A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, Federal Agency of Scientific Organizations, 86, VNIISS, Ramon Region, Voronezh Province, 396030 Russia, e-mail

Received June 30, 2015


Traditional obtaining of inbred lines and hybrids in sugar beet breeding requires a long time and is labour-consuming because of 2-year cycle of plant development, self- and cross-incompat-ibility, and inbreeding depression. To induce genotypic diversity in initial population, biotechnology methods including haploid parthenogenesis are promising. We have shown that, when inducing sugar beet (Beta vulgaris L.) haploids in vitro, express-diagnostics using phenotypic and embryological characters that are representative of periods of flowering shoots, organs and buds development, and stages of embryo sac, ovule and pollen grains formation is effective. The regenerative activity is observed in ovules of bud 1 to bud 25 located on ear part of pleochasium upward from the open flower. The nuclei and cells of female gametophyte of isolated ovules under in vitro conditions are capable of neoplasm at all stages of development, but the 8-nuclear or 7-celled embryo sacs are the most appropriate to morphogenesis and switching of development program from gametophyte to sporophyte type. Critical period of embryo sac development has been beforehand determined from the accompanying embryological characters — the presence of single-nuclear and two-three-celled pollen grains of anthers located in the same bud as ovules. The results we obtained indicate that hormonal composition of the Gamborg's B-5 (B5) medium is an important factor that effectively regulates direction of morphogenetic development in isolated ovules through direct regeneration (embryoidogenesis) or via callus (hemorhizogenesis) that is the evidence of totipotency of both sexual and somatic cells in the explant. The obtained data on in vitro reproduction of haploid regenerants add to available scientific notion of morphogenetic potential specificity in sugar beet plants. Stabilizing selection used to produce double haploids promotes detection of valuable morphological features of the regenerants. Determination of chromosome and chloroplast numbers in stomata guard cells as well as isozyme electrophoretic mobility (for Adh-1, Mdh-1, Mdh-2, Me-1, Idh-1, Idh-2, Gdh-1 loci) can serve as markers when inducing haploidy and producing homozygous restitution lines of sugar beet. Efficiency of RFLP-analysis method using Hind III restrictase that has allowed for the first time to identify haploid microclones according cytoplasm type is shown. Molecular markers have indicated that regenerants with normal cytoplasm (N) have one PCR-product of 800 bp in length not digested by Hind III. Two fragments (320 bp and 480 bp) of 800 bp product digestion are found in cytoplasmic male sterile (CMS) forms (S) that reflects combination of recessive and dominant genes. Obtaining haploid regenerants with sterile cytoplasm from initial population is of great theoretical and practical importance for sugar beet breeding thus facilitating the problem of producing homozygous lines with CMS and high-productive hybrids on the sterile basis.

Keywords: sugar beet (Beta vulgaris L.) haploid parthenogenesis, female gametophyte, doubled haploid, embryoids, organogenesis, isozymes, RFLP-analysis.


Full article (Rus)

Full text (Eng)



  1. Burenin V.I. Geneticheskie resursy roda Beta L. (Svekla) [Genetic resources of genus Beta L. (beet)]. St. Petersburg, 2007 (in Russ.).    
  2. Butenko R.G. Biologiya kletok vysshikh rastenii in vitro i biotekhnologii na ikh osnove [Plant cell biology in vitro and cell cultures]. Moscow, 1999 (in Russ.).
  3. Baenziger P.S., Russell W.K., Groef G.L., Campbell B.T. Improving lives: 50 years of crop breeding genetics and cytology. Crop Sci., 2006, 46: 2230-2244 CrossRef
  4. Atanassov A.I. Method for continuous bud for mation in tissne culture of sugar beet (Beta vulgaris L.). Pflazenzuchtg, 1980, 84: 23-29.
  5. Slavova  J. Effective method for sugar beet haploids obtained from unpollinated ovules. Biotechnology  &  Biotechnological Equipment, 2014, 7(2): 34-35 CrossRef
  6. Chen J.F., Cui L., Malik A.A., Mbira K.G. In vitro haploid and diploid production via unfertilized ovule culture. Plant Cell and Tissue Culture, 2011, 104(3): 311-319 CrossRef
  7. Murovec J., Bohanec B. Haploids and doubled haploids in plant breeding. In: Plant breeding. I. Abdurakhmonov (ed.). InTech d.o.o., Croatia, 2012: 87-106 CrossRef
  8. Znamenskaya V.V., Zhuzhzhalova T.P., Podvigina O.A. Materialy Rossiiskogo simpoziuma «Novye metody po biotekhnologii rastenii» [Proc. Russian Symp. «New methods in plant biotechnology»]. Pushchino, 1993: 111 (in Russ.).
  9. Podvigina O.A. Sakharnaya svekla, 2003, 10: 22-24 (in Russ.).
  10. Nagl N., Mezei S., Kovacev L., Vasic D., Cacic N. Induction and micropropagation potential of sugar beet haploids. Genetica, 2004, 36(3): 187-194 CrossRef
  11. Sliwinska E., Pedersen H. Flow cytometric analsis of nuclear replication stages during germination of sugar-beet seeds different in vigour. Electronic Journal of Polish Agricultural Universities, 1999, 2(1).
  12. Svirshchevskaya A.M., Dolezel J. Production and performance of gynogenetic sugarbeet lines. Journal of Sugar Beet Research, 2000, 37(4): 117-133 CrossRef
  13. Gürel S., Gürel E., Kaya Z., Erdal M., Güler E. Effects of antimitotic agents on haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Biotechnology & Biotechnological Equipment, 2003, 17(2): 97-101 CrossRef
  14. Klimek-Chodacka M., Baranski R. Comparison of haploid and doubled haploid sugar beet clones in their ability to micropropagate and regenerate. Electron. J. Biotechn., 2013, 16(2): 1-12 CrossRef
  15. Svirshchevskaya A.M. Vestsi natsyyanal'nai Akademii navuk Belarusi, 2008, 2: 48-55 (in Russ.).
  16. Zemlyanukhin A.A., Zemlyanukhin L.A. Metabolizm organicheskikh kislot rastenii [Organic acid metabolism in plants]. Voronezh, 1995 (in Russ.).
  17. Levites E.V., Svirshchevskaya A.M., Kirikovich A.A., Mil'ko L.V. Informatsionnyi vestnik VOGIS, 2005, 9(4): 512-517 (in Russ.).
  18. Beckmann J.S., Soller M. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. Appl. Genet., 1983, 67: 35-43 CrossRef
  19. Zaitsev G.N. Metodika biometricheskikh raschetov [Mathematical statistics in biology]. Moscow, 1973 (in Russ.).
  20. Podvigina O.A. V sbornike: Entsiklopediya roda Veta. Biologiya, genetika i selektsiya svekly (nauch. tr. Instituta tsitologii i genetiki SO RAN) [In: Encyclopedia of beet Veta genus: biology, genetics and breeding]. Novosibirsk, 2010: 455-465 (in Russ.).
  21. Zhuzhzhalova T.P., Fomenko N.R. Sakharnaya svekla, 2003, 7: 26-27 (in Russ.).
  22. Zhuzhzhalova T.P., Znamenskaya V.V., Podvigina O.A., Yarmolyuk G.I. Reproduktivnaya biologiya sakharnoi svekly [Reproductive biology of sugar beet]. Voronezh, 2007 (in Russ.).
  23. Petrov D.F. Geneticheskie osnovy apomiksisa [Genetic control of apomixis]. Novosibirsk, 1979 (in Russ.).
  24. Taratonov N.A. Vliyanie ekzogennykh faktorov na rost i razvitie regenerantov v protsesse formirovaniya digaploidnykh form sakharnoi svekly. Kandidatskaya dissertatsiya [Effect of exogenous factors on the growth and development of the regenerated plants under sugar beet dihaploidization. PhD Thesis]. Ramon', 1999 (in Russ.).
  25. Batygina T.B., Kruglova N.N., Gorbunova V.Yu., Titova G.E., Sel'dimirova O.A. Ot mikrospory — k sortu [From microspore to variety]. Moscow, 2010 (in Russ.).
  26. Zhuzhzhalova T.P., Podvigina O.A., Znamenskaya V.V. V sbornike: Entsiklopediya roda Veta. Biologiya, genetika i selektsiya svekly (nauchnye trudy Instituta tsitologii i genetiki SO RAN) [In: Encyclopedia of beet Veta genus: biology, genetics and breeding]. Novosibirsk, 2010: 403-419 (in Russ.).
  27. Znamenskaya V.V. V sbornike: Entsiklopediya roda Veta. Biologiya, genetika i selektsiya svekly (nauchnye trudy Instituta tsitologii i genetiki SO RAN) [In: Encyclopedia of beet Veta genus: biology, genetics and breeding]. Novosibirsk, 2010: 420-437 (in Russ.).
  28. Vasil'chenko E.N., Zhuzhzhalova T.P. Sakharnaya svekla, 2011, 1: 18-21 (in Russ.).
  29. Fedulova T.P. Teoreticheskie i prakticheskie aspekty molekulyarno-geneticheskogo markirovaniya v selektsii sakharnoi svekly (Beta vulgaris L.). Doktorskaya dissertatsiya [Theoretical and practical aspects of molecular marking in sugar beet (Beta vulgaris L.) breeding. DSci Thesis]. Ramon', 2005 (in Russ.).
  30. Kirikovich S.S., Svirshchevskaya A.M., Levites E.V. Variation at isozyme loci in seed offspring of sugar beet gynogenetic lines. Sugar Tech., 2003, 5(4): 289-292 CrossRef
  31. Levites E.V., Svirshchevskaya A.M., Kirikovich S.S., Mil’ko L.V. Variation at isozyme loci in cultured in vitro sugar beet regenerants of gynogenetic origin. Sugar Tech., 2005, 7(1): 71-75 CrossRef
  32. Nishizawa S., Kubo T., Mikami T. Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr. Genet., 2000, 37: 34-38 CrossRef
  33. Nishizawa S., Mikami T., Kubo T. Mitochondrial DNA phylogeny of cultivated and wild beets: relationships among cytoplasmic male-sterility-inducing and nonsterilizing cytoplasms. Genetics, 2007, 177: 1703-1712 CrossRef
  34. Cheng D., Kitazaki K., Xu D., Mikami T., Kubo T. The distribution of normal and male-sterile cytoplasms in Chinese sugar-beet germplasm. Euphytica, 2009, 165: 345-354 CrossRef
  35. Moritani M., Taguchi K., Kitazaki K., Matsuhira H., Katsuyama T., Mikami T., Kubo T. Identification of the predominant nonrestoring allele for Owen-type cytoplasmic male sterility in sugar beet (Beta vulgaris L.): development of molecular markers for the maintainer genotype. Mol. Breeding, 2013, 32: 91-100 CrossRef