doi: 10.15389/agrobiology.2016.5.593eng

UDC 635.656:581.557:577.21:575.116

ORCID: Zhukov V.A., Borisov A.Y., Tikhonovich I.A.

Authors wish to thank Dr. E.S. Ovchinnikova (University of Sydney, Australia) for assistance in experiments with pea molecular markers.
Supported by Russian Science Foundation, grant № 14-24-00135



V.A. Zhukov1, O.Yu. Shtark1, T.A. Nemankin1, 2, A.A. Kryukov1,
A.Yu. Borisov1, I.A. Tikhonovich1, 3

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
2BioCad Joint Stock Co., 34-A, ul. Svyazi, pos. Strelna, St. Petersburg, 198515 Russia;
3Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 Russia

Received December 14, 2015


This article presents a review of current data on genetic mapping of pea (Pisum sativum L.) genes participating in development and regulation of arbuscular-mycorrhizal and legume-Rhizobial symbioses. By means of mutational analysis several regulatory symbiotic genes (Sym-genes) were identified in model and crop legumes, particularly, among them more than 40 pea Sym-genes. Some of them are already cloned and sequenced, and structural and functional similarity was demonstrated for orthologous Sym-genes in different legume species. The functions of these genes are diverse and include the control of perception of the microsymbiont’s signal molecules, activation of the signal cascade (which is common for both legume-rhizobial and arbuscular-mycorrhizal symbioses), and consequent transcriptional changes in root cortex. To identify the sequence of mutated pea genes, an approach is used that is based on comparative genetic mapping and search for candidate gene in the genome of closely related legume plant barrel medic (Medicago truncatula Gaertn.). The web site (D.M. Goodstein et al., 2012) presents the current state of the barrel medic’s genome sequencing in the form of genome browser, which facilitates the search for homologous genes and the sequence analysis of candidate genes. Significant similarity of pea and barrel medic genomes allows development of gene-based molecular markers, comparison of obtained pea genetic map with M. truncatula genome, and pea gene cloning after finding mutations with similar phenotypic manifestation. Currently, most of pea Sym-genes are mapped in genome; that resulted in identification of the sequences of 14 symbiotic genes. In particular, authors of the present review were able to sequence the pea genes Sym35 — the homologue of NIN of Lotus japonicus (Regel.) K. Larsen (A.Y. Borisov et al., 2003), Sym37 — the homologue of NFR1 of L. japonicus (V.A. Zhukov et al., 2008), Sym33 — the homologue of IPD3 of barrel medic (E. Ovchinnikova et al., 2011), Cochleata — the homologue of NOOT of barrel medic (J.M. Couzigou et al., 2012). In recent years, considering the development of modern technologies of Next Generation Sequencing and massive genotyping, an avalanche of data on mapping pea gene-based data is being accumulated. Saturation of pea genetic map with markers, undoubtedly, will facilitate mapping of symbiotic genes and identification of their sequences; this will help to broaden the understanding of how the system of genes, which control interactions with beneficial soil microorganisms, functions in pea.

Keywords: legumes, legume-rhizobial symbiosis, arbuscular mycorrhiza, symbiotic plant genes, genetic mapping, synteny, gene-based molecular markers.


Full article (Rus)

Full text (Eng)



  1. Gianinazzi-Pearson V. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. The Plant Cell, 1996, 8: 1871-1883 CrossRef
  2. Brundrett M.C. Coevolution of roots and mycorrhizas of land plants. New Phytologist, 2002, 154: 275-304 CrossRef
  3. Dilworth M.J., James E.K., Sprent J.I., Newton W.I. Nitrogen-fixing leguminous symbioses. Springer Science+Business Media B.V., 2008 CrossRef
  4. Smith S.E., Read D.J. Mycorrhizal symbiosis. Academic Press, NY, USA, 2008.
  5. Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol., 2008, 6: 763-775 CrossRef
  6. Oldroyd G.E. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol., 2013, 11(4): 252-263 CrossRef
  7. Gobbato E. Recent developments in arbuscular mycorrhizal signaling. Curr. Opin. Plant Biol., 2015, 26: 1-7 CrossRef
  8. Borisov A.Yu., Shtark O.Yu., Zhukov V.A., Nemankin T.A., Naumkina T.S., Pinaev A.G., Akhtemova G.A., Voroshilova V.A., Ovchinnikova E.S., Rychagova T.S., Tsyganov V.E., Zhernakov A.I., Kuznetsova E.V., Grishina O.A., Sulima A.S., Fedorina Ya.V., Chebotar' V.K., Bisseling T., Lemanso F., Dzhianinazzi-Pirson V., Rate P., Sankhuan Kh., Stougaard I., Berg G., Makfi K., Ellis N., Tikhonovich I.A. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 41-47. Available CrossRef No date (in Russ.).
  9. Borisov A.Y., Danilova T.N., Koroleva T.A., Naumkina T.S., Pavlova Z.B., Pinaev A.G., Shtark O.Y., Tsyganov V.E., Voroshilova V.A., Zhernakov A.I., Zhukov V.A., Tikhonovich I.A. Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: fundamentals and application. Biologia, 2004, 59(Suppl 13): 137-144.
  10. Sandal N., Petersen T.R., Murray J., Umehara Y., Karas B., Yano K., Kumagai H., Yoshikawa M., Saito K., Hayashi M., Murakami Y., Wang X., Hakoyama T., Imaizumi-Anraku H., Sato S., Kato T., Chen W., Hossain M.S., Shibata S., Wang T.L., Yokota K., Larsen K., Kanamori N., Madsen E., Radutoiu S., Madsen L.H., Radu T.G., Krusell L., Ooki Y., Banba M., Betti M., Rispail N., Skøt L., Tuck E., Perry J., Yoshida S., Vickers K., Pike J., Mulder L., Charpentier M., Müller J., Ohtomo R., Kojima T., Ando S., Marquez A.J., Gresshoff P.M., Harada K., Webb J., Hata S., Suganuma N., Kouchi H., Kawasaki S., Tabata S., Hayashi M., Parniske M., Szczyglowski K., Kawaguchi M., Stougaard J. Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol.-Plant Microbe Interact., 2006, 19: 80-91 CrossRef
  11. Pislariu C.I., Murray J.D., Wen J., Cosson V., Muni R.R.D., Wang M., Benedito V.A., Andriankaja A., Cheng X., Torres J.I., Mondy S., Zhang S., Taylor M.E., Tadege M., Ratet P., Mysore K.S., Chen R., Udvardi M.K. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. Plant Physiol., 2012, 159(4): 1686-1699 CrossRef
  12. Lie T.A. Temperature-dependent root-nodule formation in pea cv. Iran. Plant and Soil, 1971, 34: 751-752.
  13. Oldroyd G.E., Downie J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol., 2008, 59: 519-546 CrossRef
  14. Graham P.H., Vance C.P. Legumes: importance and constraints to greater use. Plant Physiol., 2003, 131: 872-877 CrossRef
  15. Guinel F.C., Geil R.D. A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can. J. Bot., 2002, 80: 695-720 CrossRef
  16. Tsyganov V.E., Voroshilova V.A., Priefer U.B., Borisov A.Y., Tikhonovich I.A. Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium-pea (Pisum sativum L.) symbiosis. Ann. Bot., 2002, 89: 357-366 CrossRef
  17. Jacobi L.M., Petrova O.S., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A. Effect of mutations in the pea genes Sym33 and Sym40. I. Arbuscular mycorrhiza formation and function. Mycorrhiza, 2003, 13: 3-7 CrossRef
  18. Jacobi L.M., Zubkova L.A., Barmicheva E.M., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A. Effect of mutations in the pea genes Sym33 and Sym40. II. Dynamics of arbuscule development and turnover. Mycorrhiza, 2003, 13: 9-16 CrossRef
  19. Voroshilova V.A., Demchenko K.N., Brewin N.J., Borisov A.Y., Tikhonovich I.A. Initiation of a legume nodule with an indeterminate meristem involves proliferating host cells that harbour infection threads. New Phytologist, 2009, 181: 913-923 CrossRef
  20. Ovchinnikova E. Genetic analysis of symbiosome formation.PhD thesis. Wageningen University, Wageningen, NL, 2012.
  21. Shtark O.Y., Sulima A.S., Zhernakov A.I., Kliukova M.S., Fedorina J.V., Pinaev A.G., Kryukov A.A., Akhtemova G.A., Tikhonovich I.A., Zhu-
    kov V.A. Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis, 2016, 68(1): 129-144 CrossRef
  22. Aubert G., Morin J., Jacquin F., Loridon K., Quillet M.C., Petit A., Rameau C., Lejeune-Hénaut I., Huguet T., Burstin J. Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor. Appl. Genet., 2006, 112(6): 1024-1041 CrossRef
  23. Zhukov V.A., Shtark O.Yu., Borisov A.Yu., Tikhonovich I.A. Genetika, 2009, 45(11): 1449-1460 (in Russ.).
  24. Young N.D., Udvardi M. Translating Medicago truncatula genomics to crop legumes. Curr. Opin. Plant Biol., 2009, 12(2): 193-201 CrossRef
  25. Inge-Vechtomov S.G. Genetika s osnovami selektsii [Genetics and basic breeding]. St. Petersburg, 2010 (in Russ.).
  26. Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg L. MAPMAKER, an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181 CrossRef
  27. Ukai Y. MAPL: a package of computer programs for construction of DNA polymorphism linkage maps and analysis of QTL. Breeding Sci., 1995, 45: 139-142 CrossRef
  28. Van Ooijen J.W. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet. Res., 2011, 93(5): 343-349 CrossRef
  29. Cheema J., Dicks J. Computational approaches and software tools for genetic linkage map estimation in plants. Briefing in Bioinformatics, 2009, 10(6): 595-608 CrossRef
  30. Zhernakov A.I. F2Breed. Programma dlya otsenki rekombinatsii mezhdu geneticheskimi lokusami i geneticheskikh markerov v mnogomernom prostranstve pri analize kosegregatsii priznakov v F2-populyatsii [Program for evaluating recombination between genetic loci and genetic markers in a multidimensional space to analyze cosegregation of traits in F2-population]. State Reg. Cert. Cert. № 2012619482. Registered October 19, 2012 (in Russ.).
  31. Ezhova T.A., Lebedeva O.V., Ogarkova O.A., Penin A.A., Soldatova O.P., Shestakov S.V. Arabidopsis thaliana — model'nyi ob"ekt genetiki rastenii [Arabidopsis thaliana — a model organisms in plant genetics]. Moscow, 2003 (in Russ.).
  32. Weeden N.F., Swiecicki W.K., Ambrose M., Timmerman G.M. Linkage groups of pea. Pisum Genetics, 1993, 25: 4.
  33. Weeden N.F., Swiecicki W.K., Timmerman-Vaughan G.M., Ellis T.H.N., Ambrose M. The current pea linkage map. Pisum Genetics, 1996, 28: 1-4.
  34. Hall K.J., Parker J.S., Ellis T.H.N., Turner L., Knox M.R., Hofer J.M.I., Lu J., Ferrandiz C., Hunter P.J., Taylor J.D., Baird K. The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome, 1997, 40: 755-769 CrossRef
  35. Flavell A.J., Knox M.R., Pearce S.R., Ellis T.H. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant Journal, 1998, 16(5): 643-650 CrossRef
  36. Laucou V., Haurogne K., Ellis N., Rameau C. RAPD-based genetic linkage map of Pisum sativum. Theor. Appl. Genet., 1998, 97: 905-915 CrossRef
  37. Weeden N.F., Ellis T.H.N., Timmerman-Vaughan G.M., Swiecicki W.K., Rozov S.M., Berdnikov V.A. A consensus linkage map for Pisum sativum. Pisum Genetics, 1998, 30: 1-4.
  38. Irzykowska L., Wolko B., Swiecicki W.K. The genetic linkage map of pea (Pisum sativum L.) based on molecular, biochemical and morphological markers. Pisum Genetics, 2001, 33: 13-18.
  39. Weeden N.F., Moffet M. Identification of genes affecting root mass and root/shoot ratio in a JI1794 x «Slow» RIL population. Pisum Genetics, 2002, 34: 28-31.
  40. Bordat A., Savois V., Nicolas M., Salse J., Chauveau A., Bourgeois M., Potier J., Houtin H., Rond C., Murat F., Marget P., Aubert G., Burstin J. Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3: Genes, Genomes, Genetics, 2011, 1(2): 93-103 CrossRef
  41. Leonforte A., Sudheesh S., Cogan N.O., Salisbury P.A., Nicolas M.E., Materne M., Forster J.W., Kaur S. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol., 2013, 13: 161 CrossRef
  42. Duarte J., Riviere N., Baranger A., Aubert G., Burstin J., Cornet L., Lavaud C., Lejeune-Henaut I., Martinant J.P., Pichon J.P., Pilet-Nayel M.L., Boutet G. Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. Genomics, 2014, 15: 126 CrossRef
  43. Sindhu A., Ramsay L., Sanderson L.A., Stonehouse R., Li R., Condie J., Shunmugam A.S.K., Liu Y., Jha A.B., Diapari M., Burstin J., Aubert G., Tar’an B., Bett K.E., Warkentin T.D., Sharpe A.G. Gene-based SNP discovery and genetic mapping in pea. Theor. Appl. Genet., 2014, 127(10): 2225-2241 CrossRef
  44. Konieczny A., Ausubel F.M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 1993, 4: 403-410 CrossRef
  45. Zhukov V.A., Kuznetsova E.V., Ovchinnikova E.S., Rychagova T.S., Titov V.S., Pinaev A.G., Borisov A.Y., Moffet M., Domoney C., Ellis T.H.N., Ratet P., Weeden N.F., Tikhonovich I.A Gene-based markers of pea linkage group V for mapping genes related to symbioses. Pisum Genetics, 2007, 39: 19-25.
  46. Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., Rokhsar D.S. Phytozome: a comparative platform for green plant genomics. Nucl. Acids Res., 2012, 40(Database issue): D1178-D1186 CrossRef
  47. Zhukov V.A., Nemankin T.A., Ovchinnikova E.S., Kuznetsova E.V., Zhernakov A.I., Titov V.S., Grishina O.A., Sulima A.S., Borisov Ya.G., Borisov A.Yu., Tikhonovich I.A. V sbornike: Faktori eksperimental'noї evolyutsii organizmiv [In: The factors of experimental evolution. V. 9]. Kiev, 2010. Tom 9: 30-34 (in Russ.).
  48. Nemankin T.A. Analiz geneticheskoi sistemy gorokha (Pisum sativum L.), kontroliruyushchei razvitie arbuskulyarnoi mikorizy i azotfiksiruyushchego simbioza. Avtoreferat kandidatskoi dissertatsii [Analysis of pea (Pisum sativum L.) genetic system which controls the development of arbuscular mycorrhiza and nitrogen-fixing symbiosis. PhD Thesis]. St. Petersburg, 2011 (in Russ.).
  49. Titov V.S. Geneticheskoe kartirovanie simbioticheskikh genov gorokha posevnogo (Pisum sativum L.). Kvalifikatsionnaya rabota magistra [Genetic mapping of symbiotic genes in pea (Pisum sativum L.). Master’s Thesis]. St. Petersburg, 2012 (in Russ.).
  50. Kneen B.E., Weeden N.F., LaRue T.A. Non-nodulating mutants of Pisum sativum (L.) cv. Sparkle. J. Hered., 1994, 85(2): 129-133.
  51. Krusell L., Madsen L.H., Sato S., Aubert G., Genua A., Szczyglowski K., Duc G., Kaneko T., Tabata S., de Bruijn F., Pajuelo E., Sandal N., Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420(6914): 422-426 CrossRef
  52. Borisov A.Y., Madsen L.H., Tsyganov V.E., Umehara Y., Voroshilova V.A., Batagov A.O., Sandal N., Mortensen A., Schauser L., Ellis N., Tikhonovich I.A., Stougaard J. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol., 2003, 131: 1009-1017 CrossRef
  53. Lévy J., Bres C., Geurts R., Chalhoub B., Kulikova O., Duc G., Journet E.P., Ané J.M., Lauber E., Bisseling T., Dénarié J., Rosenberg C., Debellé F. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 2004, 303(5662): 1361-1364 CrossRef
  54. Zhukov V., Radutoiu S., Madsen L.H., Rychagova T., Ovchinnikova E., Borisov A., Tikhonovich I., Stougaard J. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. Mol. Plant-Microbe Interact., 2008, 21(12): 1600-1608 CrossRef
  55. Krusell L., Sato N., Fukuhara I., Koch B.E., Grossmann C., Okamoto S., Oka-Kira E., Otsubo Y., Aubert G., Nakagawa T., Sato S., Tabata S., Duc G., Parniske M., Wang T.L., Kawaguchi M., Stougaard J. The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. The Plant Journal, 2011, 65(6): 861-871 CrossRef
  56. Ovchinnikova E., Journet E.P., Chabaud M., Cosson V., Ratet P., Duc G., Fedorova E., Liu W., Op den Camp R., Zhukov V., Tikhonovich I., Borisov A., Bisseling T., Limpens E. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol. Plant-Microbe Interact., 2011, 24(11): 1333-1344 CrossRef
  57. Couzigou J.M., Zhukov V., Mondy S., Abu el Heba G., Cosson V., Ellis T.H., Ambrose M., Wen J., Tadege M., Tikhonovich I., Mysore K.S., Putterill J., Hofer J., Borisov A.Y., Ratet P. NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. The Plant Cell, 2012, 24(11): 4498-4510 CrossRef
  58. Varshney R.K., Close T.J., Singh N.K., Hoisington D.A., Cook D.R. Orphan legume crops enter the genomics era! Curr. Opin. Plant Biol., 2009, 12(2): 202-210 CrossRef
  59. Zhukov V.A., Kulaeva O.A., Zhernakov A.I., Tikhonovich I.A. «Next Generation Sequencing» for studying transcriptome profiles of tissues and organs of garden pea (Pisum sativum L.) (review). Agricultural Biology, 2015, 50(3): 278-287 CrossRef (in Engl.).
  60. Sudheesh S., Sawbridge T.I., Cogan N.O., Kennedy P., Forster J.W., Kaur S. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. BMC Genomics, 2015, 16: 611 CrossRef
  61. Alves-Carvalho S., Aubert G., Carrère S., Cruaud C., Brochot A.L., Jacquin F., Klein A., Martin C., Boucherot K., Kreplak J., da Silva C., Moreau S., Gamas P., Wincker P., Gouzy J., Burstin J. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant Journal, 2015, 84(1): 1-19 CrossRef
  62. Zhukov V.A., Zhernakov A.I., Kulaeva O.A., Ershov N.I., Borisov A.Y., Tikhonovich I.A. De novo assembly of the pea (Pisum sativum L.) nodule transcriptome. International Journal of Genomics, 2015, article 695947 CrossRef