doi: 10.15389/agrobiology.2016.5.688eng

UDC 635:582.663.2:631.811.982:581.13/.14



L.L. Kirillova1, G.N. Nazarova2, E.P. Ivanova2

1L.N. Tolstoi State Pedagogical University, 125, prosp. Lenina, Tula, 300026 Russia;
2Institute of Basic Biological Problems, Federal Agency of Scientific Organizations, 2, ul. Institutskaya, Pushchino, Moscow Province, 142290 Russia,

Received August 30, 2015


Currently protective, reparative, anti-mutagenic, antioxidant properties of para-aminobenzoic acid (pABA) are described. The huge number of the facts is saved up concerning its efficiency on all elements of yield structure of different plants species and household purposes. However, there is almost no information about the effect of pABA on amaranth plants in the world literature. Vegetable amaranth is a valuable food culture, promising to Central Russia. Therefore, we are especially interested in ways to facilitate its introduction, increase productivity, and nutritional value. To this end, it is possible to use pABA as environmentally friendly biologically active natural compound with a broad spectrum of action. In this work, we first investigated the effect of pABA on seed germination, and growth, development and productivity of vegetable amaranth Amaranthus caudatus L. variety K173 (K173) and A. cruentus L. variety K185 (K185) of grown plants as well as on light-dependent processes of photosynthesis and nitrogen assimilation in the leaves. To assess the characteristics and level of pABA activity the experimental results concerning influence of a synthetic citokinin 6-benzilaminopurin (6-BAP) on the same parameters are given. A dependence of amaranth seed germination on pABK 10-9 М to 10-4 М concentration used for treatment was found. The seed germination in both varieties was 23±5 % higher at 10-6 M pABK, whereas 10-4 M pABK decreased it by 22±4 %, and other concentrations had no significant effect. In K173 the 15-day seedlings exceeded the control by 10±5 % in height, by 76±6 % in weight, and by 133±17 % in root length at the latent growth stage. Parameters of K185 plants were slightly higher. The acceleration of plant development may contribute to survival and adaptation. Stimulating effect of pABA on К173 and К185 plant growth in height is maintained for the life of plants, except initiation of generative organs (days 60-80). A significant increase (30-85 %) in plant weight compared to control was identified at all stages of ontogenesis. Productivity of leaf biomass per plant in both varieties on day 115 was on average 50±11 % more than in the control. In the leaves of 45-day plants of К173 grown from treated seed, the activity of nitrate reductase increased by 37±4 % and the total protein level was 10±3 % higher when compared to control, thus improving nutritional value of the culture. The rate of photophosphorylation in chloroplasts was shown to be 27±6 % higher, and the rate of electron transport was 32±6 % higher in comparison with the control that led to an increase in leaf net photosynthesis by 22±7 %. These were no different from 6-BAP effects. The pABA influence on the seed germination and plant biometric parameters in K173 and K185 was comparable to the action of 6-BAP. pABK influenced nitrate reductase activity, protein level, chlorophyll content, and photophosphorylation rate in leaves of K173 plants much weaker, than 6-BAP, and differed from it. The pABA properties as a plant hormone are discussed, and the use is recommended for the vegetable amaranth cultivation.

Keywords: amaranth, para-aminobenzoic acid, plant hormones, seed germination, plants growth and development, latent growth, adaptation, productivity, chloroplasts, photophosphorylation, electron transport, protein content, nitrogen assimilation, nitrate reductase.


Full article (Rus)

Full text (Eng)



  1. Macht D.I. Influence of sulfonamides and para-aminobenzoic acid on the growth of Lupinus albus. Exp. Biol. Med., 1945, 60: 217-220 CrossRef
  2. Rapoport I.A., Vasil'eva S.V., Davnichenko L.S. Rol' para-amino-benzoinoi kisloty v reparatsii povrezhdenii, indutsirovannykh UF- i γ-izlucheniyami. DAN, 1979, 247(1): 231-234 (in Russ.).
  3. Tashenova A.A., Kulumbetova S.K., Sinel'shchikova T.A., Akhmatullina N.B., Zasukhina G.D., Rapoport I.A. Treatment of cells with para-aminobenzoic acid reduces the number of DNA breaks induced by chemical mutagens. Dokl. Akad. Nauk SSSR, 1990, 311(4): 977-979.
  4. Gichner T., Badaev S.A., Pospísil F., Velemínský J. Effects of humic acids, para-aminobenzoic acid and ascorbic acid on the N-nitrosation of the carbamate insecticide propoxur and on the mutagenicity of nitrosopropoxur. Mutat. Res., 1990, 229(1): 37-41 CrossRef
  5. Eiges N.S., Volchenko G.A., Volchenko S.G., Vaisfel'd L.I., Kozlov V.S., Donets  N.V. Avtokhtonnі ta іntrodukovanі roslini, 2012, 8: 71-78 (in Russ.).
  6. Cronenberg L., Abelle T., Pacheco H. New synthetic substances with phytohormonal properties. Bull. Soc. Chim. Biol., 1964, 46: 703-715.
  7. Basset G.J., Quinlivan E.P., Ravanel S., Rebeille F., Nichols B.P., Shinozaki K., Seki M., Adams-Phillips L.C., Giovannoni J.J., Gregory J.F. III, Hanson A.D. Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. PNAS USA, 2004, 101: 1496-1501 CrossRef
  8. Rebeille F., Ravanel S., Jabrin S., Douce R., Storozhenko S., van der Straeten D. Folates in plants: biosynthesis, distribution, and enhancement. Physiologia Rlantarum, 2006, 126: 330-342 CrossRef
  9. Hanson A.D., Roje S. One-carbon metabolism in higher plants. Annu. Rev. Plant Biol., 2001, 52: 119-137 CrossRef
  10. Kozhevnikova N.A., Rapoport I.A. Ability of para-aminobenzoic acid to restore the activity of alkaline ribonuclease. Izv. Akad. Nauk SSSR Biol., 1987, 5: 787-791.
  11. Kozhevnikova N.A., Rapoport I.A., Ivanitskaya E.A., Pudrina I.D. DAN, 1983, 273(2): 476-479 (in Russ.). 
  12. Trausch J.J., Batey R.T. A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. Chem. Biol., 2014, 21(2): 205-216 CrossRef
  13. Sochor J., Zitka O., Skutkova H., Pavlik D., Babula P., Krska B., Horna A., Adam V., Provaznik I., Kizek R. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules, 2010, 15(9): 6285-6305 CrossRef
  14. Mostovshchikova S.M., Belozerova A.A. Uspekhi sovremennogo estestvoznaniya, 2013, 8: 20-21 (in Russ.).   
  15. Pozdnyakova N., Makarov O., Chernyshova M., Turkovskaya O., Jarosz-Wilkolazka A. Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb. Technol., 2013, 52(1): 44-53 CrossRef
  16. Song G.C., Choi H.K., Ryu C.M. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann. Bot., 2013, 111(5): 925-934 CrossRef
  17. Crisan M.E., Bourosh P., Maffei M.E., Forni A., Pieraccini S., Sironi M. Chumakov Y.M. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid. PLoS One, 2014, 9(7) CrossRef
  18. Solonenko Yг.A., Alekseichuk G.N. Vestsi Natsyyanal'nai akademii navuk Belarusi, 2005, 5(2): 63-66 (in Russ.).
  19. Eiges N.S. V sbornike: Khimicheskie mutageny i para-aminobenzoinaya kislota v povyshenii urozhainosti sel'skokhozyaistvennykh rastenii [In: Chemical mutagens and para-aminobenzoic acid in increasing crop productivity]. Moscow, 1989 (in Russ.).
  20. Sherer V.A., Gadiev R.Sh. Primenenie regulyatorov rosta v vinogradarstve i pitomnikovodstve [Growth regulators for viticulture and nursery]. Kiev, 1991.
  21. Bome N.A., Govorukhina A.A. Vestnik Tyumenskogo gosudarstvennogo universiteta, 1998, 2: 176-182 (in Russ.).
  22. Kononkov P.F., Pivovarov V.F., Gins V.K., Gins M.S. Introduktsiya i selektsiya ovoshchnykh kul'tur dlya sozdaniya novogo pokoleniya produktov funktsional'nogo deistviya [Introduction and breeding vegetables to create a new generation of functional foods]. Moscow, 2008 (in Russ.).
  23. Wintermans J.F.G.M.,  De Mots  A. Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochem. Biophys. Acta, 1965, 109(2): 448-453.
  24. West K.R., Wiskich J.T. Photosynthetic control by isolated pea chloroplasts. Biochem. J., 1968, 109(4): 527-532 CrossRef
  25. Izava S., Good N.E. Hill reaction rates and chloroplasts fragment size. Biochem. Biophys. Acta, 1965, 109: 373-381.
  26. Bjorkmann O.M., Boardman N.K., Anderson J.M. Chloroplast components and Structure. Carnegie Inst. Year Book, 1972, 71: 115-135. 
  27. Hageman R.H., Reed A.J. Nitrate reductase from higher plants. Methods in Enzymology, 1980, 69: 270-280 CrossRef
  28. Smart M.M., Rada R.G., Donnermeyer G.N. Determination of total nitrogen in sediments using persulfate digestion an evaluation and comparison with Kjeldahl procedure. Water Res., 1983, 17(9): 1207-1211 CrossRef
  29. Bredford A. Rapid and sensitive gram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
  30. Nichiporovich A.A. Fotosinteticheskaya deyatel'nost' rastenii kak osnova ikh produktivnosti v biosfere i zemledelii [Photosynthetic activity of plants as the basis of productivity in the biosphere and agriculture]. Moscow, 1988 (in Russ.).
  31. Cheeseman J.M., Tankou S.K. Nitrate reductase and growth of Arabidopsis thaliana in solution culture. Plant and Soil, 2005, 266: 143-154 CrossRef
  32. Crisan S.F., Garay A.S. Influence of p-aminobenzoic acid on the activity of indoleacetic acid oxidase. Experientia, 1968, 15(24-10): 1009-1010.
  33. Hutchison C.E., Kieber J.J. Signaling via histidine-containing phosphotransfer proteins in Arabidopsis. Plant Signal Behav., 2007, 2(4): 287-289.
  34. Plant hormones: biosynthesis, signal transduction, action! P.J. Davies (ed.). London, 2010.
  35. Bektas Y., Eulgem T. Synthetic plant defense elicitors. Front. Plant Sci., 2015, 5: 1-17 CrossRef
  36. Ivanova E.P., Kirillova L.L., Smolygina L.D., Serdyuk O.P. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 5: 118-122 Available No date (in Russ.).