doi: 10.15389/agrobiology.2016.5.714eng

UDC 635.1/.7:581.524



A.F. Bukharov, D.N. Baleev

All-Russian Research Institute for Vegeculture, Federal Agency of Scientific Organizations, 500, Vereya, Ramenskii Region, Moscow Province, 140153 Russia,

Received March 3, 2016


Allelopathic effects in plants are due to a combination of many adaptive and environmental factors having evolutionary and economic importance. Currently the investigations on the effects of allelopathic substances on seed germination in order to develop new environmentally friendly approach to plant protection against weeds are in progress. The main  goal of our experiments was to examine the peculiarities of the seed dormancy induced under the influence of an extract from seeds of dill (Anethum graveolens L.) variety Kentavr and specific overcoming of the dormancy in various vegetable crops — carrot (Daucus carrota L.) variety Rogneda, root parsley (Petroselinum crispum (Mill.) Nyman ex A.W. Hill.) variety Lyubasha, celery root (Apium graveolens L.) variety Kupidon, lavage (Levisticum officinale W.D.J. Koch) variety Don Zhuan, coriander (Coriandrum sativum L.) variety Yantar’, and parsnip (Pastinaca sativa L.) variety Kulinar. The seeds of tested crops were treated with 15 % aqueous extract from dill seeds at 23 °C for 0 (control), 5 and 20 days in the dark. A germination of the treated seed germination was studied in dynamics at different temperature conditions — 20 °C (control); 3 °C; and 3 °C (8 hours)/20 °C (16 hours). We calculated Tip (initial period, i.e. the time prior to seed germination starts), Twagt (the weighted average germination period, i.e. the time to reach maximum germination rate) and T50 (the time to reach 50 % germination), measured the embryo length and calculated the temperature coefficient (Q10). It was shown the extract noticeably inhibited the embryo growth and seed germination in the studied crops. After exposure to allelopathic factors for 5 days the seeds of carrots, celery root, parsnip and coriander did not germinate at a standard temperature. The Twagt values exceeded the control by 229-328 %, and the T50 values were 310-379 % higher. In dill, parsley root and lovage the germinated seeds accounted for 42, 52 and 23 %, respectively. After a 20 day exposure to the allelopathic factor the seeds of celery root, carrots, parsnip and coriander did not germinate whereas in dill and lovage seeds germination delayed by 21 and 22 days. Increasing exposure time resulted in a reduced temperature coefficient (Q10) for embryo growth at different temperatures. Low temperature including constant 3 °C and variable (3/20 °C) contributed to a partial recovery of these processes in the seeds pre-exposed to allelopathic factor. In this, the Twagt and T50 increased by 11.7-35.3 days and 11.7-43.1 days, respectively, compared to control. Analysis of a combined effect of the allelopathic factor and temperature evidenced that the inhibition of seed germination influenced by the substances contained in the extract of dill seeds is due to the dormancy phenomenon.

Keywords: allelopathy, temperature, seed dormancy, seed germination, growth rate of the embryo, the temperature coefficient (Q10).


Full article (Rus)

Full text (Eng)



  1. Grodzinskii A.M. Allelopatiya rastenii i pochvoutomlenie [Allelopathy of plant and soil exhaustion]. Kiev, 1991 (in Russ.).
  2. Rice E.L., Lin C.Y., Huang C.Y. Effects of decaying rice straw on growth and nitrogen fixation of a blue green alga. Bot. Bull. Since, 1980, 21: 111-117.
  3. Pickett J.A., Birkett M.A., Blassioli-Moraes M.C., Bruce T.J.A., Chamberlain K., Gordon-Weeks R., Matthes M.C., Napier J.A., Smart L.E., Wadhams L.J., Woodcock C.M. Cis-Jasmone as allelopathic agent in inducing plant defence. Allelopathy Journal, 2007, 19: 109-117.
  4. Harborne J.B. Chemical signals in the ecosystem. Ann. Bot., 1987, 60: 39-57.
  5. Einhellig F.A. Allelopathy: current status and future goals. In: Allelopathy: Organisms, processes, and applications. Washington, 1995.
  6. Siemens D.H., Garner S.H., Mitchell-Olds T., Callaway R.M. Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology, 2002, 83: 505-517 CrossRef
  7. Murrell C., Gerber E., Krebs C., Parepa M., Schaffner U., Bossdorf O. Invasive knotweed affects native plants through allelopathy. Amer. J. Bot., 2011, 98: 38-43 CrossRef
  8. Blair A.C., Weston L.A., Nissen S.J., Brunk G.R., Hufbauer R.A. The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol. Invas., 2008, 11: 325-332 CrossRef
  9. Popovici J., Bertrand C., Jacquemoud D., Bellvert F., Fernandez M.P., Comte G. An allelochemical from Myrica gale with strong phytotoxic activity against highly invasive Fallopia × bohemica taxa. Molecules, 2011, 16: 2323-2333 CrossRef
  10. Alsaadawi I.S., Khaliq A., Lahmod N.R., Matloob A. Weed management in broad bean (Vicia faba L.) through allelopathic Sorghum bicolor (L.). Allelopathy Journal, 2013, 32(2): 203-212.
  11. Reigosa M.J., Gonzalez L., Sanchez-Moreiras A., Duran B., Puime D. Comparison of physiological effects of allelochemicals and commercial herbicides. Allelopathy Journal, 2001, 8: 211-220.
  12. Oracz K., Bailly C., Gniazdowska A., ComeD., Corbineau F., Bogatek R. Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. J. Chem. Ecol., 2007, 33: 251-264 CrossRef
  13. Oracz K., Voegele A., Tarkowska D., Jacquemoud D. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol., 2012, 53: 81-95 CrossRef
  14. Reigosa M.J., Souto X.C., Gonzalez L. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul., 1999, 28: 83-88.
  15. Alam S.M., Ala S.A., Azmi A.R., Khan M.R., Ansari R. Allelopathy and its role in agriculture. Journal of Biological Sciences, 2001, 1: 308-315 CrossRef
  16. Cook C.E., Whichard L.P., Turner B., Wall M.E., Egley G.H. Germination of witch weed (Striga lutea Lour): isolation and properties of a potent stimulant. Science, 1966, 154: 1189-1190.
  17. Xie X., Yoneyama K., Yoneyama K. The strigolactone story. Annu. Rev. Phytopathol., 2010, 48: 93-117 CrossRef
  18. Toh S., Kamiya Y., Kawakami N., Nambara E., McCourt P. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol., 2012, 53: 107-117 CrossRef
  19. Bukharov A.F., Baleev D.N. Izvestiya OGAU (Orenburg), 2012, 4(36): 225-229 (in Russ.).
  20. Lemann E., Aikhele F. Fiziologiya prorastaniya semyan zlakov [Physiology of seed germination in cereals]. Moscow, 1936 (in Russ.).
  21. Bukharov A.F., Baleev D.N., Bukharova A.R. Kinetika prorastaniya semyan. Sistema metodov i parametrov (uchebno-metodicheskoe posobie) [Kinetics of seed germination: methods and parameters]. M., 2016 (in Russ.).
  22. Thomson A.J., El-Kassaby Y.A. Interpretation of seed-germination parameters. New Forests, 1993, 7: 123-132 CrossRef
  23. Hayashi E., Aoyama N., Still D.W. Quantitative trait loci associated with lettuce seed germination under different temperature and light environments. Genome, 2008, 51: 928-947 CrossRef
  24. Kazmi R.H., Khan N., Willems L.A.J., Van Heusden A.W., Ligterink W., Hilhorst H.W.M. Complex genetics controls natural variation among seed quality phenotypes in a recombinant inbred population of an interspecific cross between Solanum lycopersicum × Solanum pimpinellifolium. Plant, Cell and Environment, 2012, 35: 929-951 CrossRef.
  25. Bewley J.D., Black M. The physiology and biochemistry of seeds. V. 2. Springer-Verlag, Berlin, 1982.
  26. Grushvitskii I.V., Agnaeva E.Ya., Kuzina E.F. Botanicheskii zhurnal, 1963, 48(10): 1484-1489 (in Russ.).
  27. Baleev D.N., Bukharov A.F. Ovoshchi Rossii, 2012, 1(14): 54-60 (in Russ.).
  28. Kordyum E.L. Tsitoembriologiya semeistva zontichnykh [Cytoembriology of Umbellíferae family]. Kiev, 1967 (in Russ.).
  29. Baskin C.C., Baskin J.M. Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, NY, 1998.
  30. Probert R.J. The role of temperature in germination ecophysiology. In: Seeds: the ecology of regeneration in plant communities. M. Fenner (ed.). CAB International, Wallingford, 1992: 285-325.
  31. Batlla D., Benech-Arnold R.L. A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds: development of a thermal time model based on changes in seed population thermal parameters. Seed Sci. Res., 2003, 13: 55-68 CrossRef
  32. Nikolaeva M.G., Lyanguzova I.V., Pozdova L.M. Biologiya semyan [Seed biology]. St. Petersburg, 1999 (in Russ.).
  33. Ovcharov K.E. Fiziologicheskie osnovy vskhozhesti semyan [Physiology of seed germination]. Moscow, 1969 (in Russ.).