doi: 10.15389/agrobiology.2016.5.696eng

UDC 633.511:632.4:57.044:581.132

Acknowledgements:
The authors are grateful for technical support and equipmentcourtesy of the INNO-Concept GmbH (Strausberg, Germany).

 

SEED ENCAPSULATION IN CHITOSAN AND ITS DERIVATIVES
RESTORES LEVELS OF CHLOROPHYLL AND PHOTOSYNTHESIS
IN WILT-AFFECTED COTTON (Gossypium L., 1753) PLANTS

N.G. Àkinshina1, D.K. Rashidova2, A.A. Azizov1

1Mirzo Ulugbek National University of Uzbekistan, Universitet-4 ko'chasi, Talabalar shaharchasi, Toshkent shahri, 100174 O‘zbekiston,
e-mail n.akinshina@yahoo.com, azazizov@rambler.ru;
2Research Institute of Cotton Breeding, Seed Production and Agrotechnologies (Republic of Uzbekistan), Salar sh., Qibray tumani, Toshkent viloyati, 111218 O‘zbekiston,
e-mail åtoile111@yandex.com

Received August 9, 2016

 

Chitosan-based biologicals and chemicals have been proved to possess antiviral, antibacterial and antimycotic activity, and be able to stimulate plant immunity. In field trials (Tashkent region, Uzbekistan, 2015-2016) we first evaluated an impact of seed encapsulation with UzChitan, chitosan ascorbate and Cu2+-chelating chitosan synthesized by the authors' method in the Institute of Chemistry and Polymer Physics of the National University of Uzbekistan (NUUz, Tashkent) from waste of silkworm cocoon processing on photosynthetic activity at wilt (Verticillium dahliae) artificial infection and in wilt-free (healthy) crops of cotton (Gossypium L., 1753) variety Sultan. It was found that wilt-affected control plants (non-treated with chitosan derivatives) had higher specific leaf weight (SLF index), their chlorophyll content was reduced and rates of respiration and apparent photosynthesis were depressed in comparison with healthy control plants.  Chlorophyll content in infected control plants was decreased by 27-30 % in terms of mg/g. Meanwhile, all plants from pre-treated seeds contained more chlorophyll compared to control: the pigment content (mg/g of dry matter) was 25.5 and 17.7 % higher when ascorbate and Cu2+-chelating chitosan used. Chlorophyll content in leaves did not vary significantly in absence of the pathogen. The apparent photosynthesis rate in control under wilt was reduced by 33 % (0.161±0.027 against 0.245±0.028 ìmol O2·m-2·sec-1). That corresponds to toxic effect of pathogen which penetrates through roots and goes up into top parts of plants, damages their phloem system, disturbs water transport, and destroys chlorophyll and leaf tissues. Besides, some tendency to respiration rate inhibition was observed for non-treated cotton plants under wilt infection (by 22 % compared with control plants from the healthy field). Netto-oxygen production (apparent photosynthesis) rates in the treated groups were higher as compared to control plants under wilt; the best results were shown by ascorbate and Cu2+-chelating chitosan (54 and 46 % higher, respectively). Respiration rates did not differ significantly in all groups under wilt. Oxygen balance (OB) index, estimated as ratio between measured oxygen netto-production and oxygen consumption rates, which reflects physiological status of plants under biogenic stress (including pathogen fungi), did not change significantly in a healthy environment when chitosan derivatives used. Under wilt, the plants from pre-treated seeds possessed higher OB indices than the corresponding control plant from the same field. Thus, the OB values with ascorbate and Cu2+-chelating chitosan were higher compared to control by 36 and 52 %, respectively. Our findings indicate that in case the cotton seeds were pre-treated with chitosan derivatives, the oxygen production, oxygen consumption and OB indices were not significantly different in the pathogen-affected and unaffected plants. Thus we can conclude about a nonspecific resistance of cotton plants to wilt (Verticillium dahliae) induced by chitosan derivatives, and reduction of toxic effects of the pathogen which manifests itself in decreasing respiration and photosynthesis rates. Possibly, it is a result of non-specific elicitor activity of chitosan and its derivatives, or their ability, due to natural polycation properties, to stimulate plants to produce specific antifungal metabolites — reactive oxygen species and phytoalexins triggering subsequent defense mechanisms. Currently, using elicitors for plant immunity correction are considered promising as they contribute to formation sustainable agrophytocenosis with high adaptiveness and yield production.

Keywords: ñhitosan, ñhitosan derivatives, cotton plant, verticilliose, chlorophyll, oxygen production, respiration, oxygen balance index.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES 

  1. Ramirez M., Rodriguez A., Alfonso L., Peniche C. Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnologia Aplicada, 2010, 27: 270-276.
  2. Kulikov S.N., Varlamov V.P. Uchenye zapiski Kazanskogo GU, estestvennye nauki, 2008, t. 150, kn. 2: 43-58 (in Russ.).
  3. Gerasimenko D.V., Avdienko I.D., Bannikova G.E., Zueva O.Yu., Varlamov V.P. Prikladnaya biokhimiya i mikrobiologiya, 2004, 40(3): 301-306 (in Russ.).
  4. Vasyukova N.I., Zinov'eva S.V., Il'inskaya L.I., Perekhod E.A., Cha-
    lenko G.I., Gerasimova N.G., Il'ina A.V., Varlamov V.P. Prikladnaya biokhimiya i mikrobiologiya, 2001, 37(1): 115-122 (in Russ.).
  5. Chirkov S.N. Prikladnaya biokhimiya i mikrobiologiya, 2002, 38(1): 5-13 (in Russ.).
  6. Rabea E., Badawy M., Stevens C., Smagghe G., Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4(6): 1457-1465.
  7. Kryzhanovskaya E.V., Varlamov V.P., Samuilenko A.Ya., Albulov A.I., Shinkarev S.M., Frolova M.A.,Eremets N.K., Bondareva N.A., Khabarov V.B., Grin' A.V. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2008, 6: 119-121 Available http://www.agrobiology.ru/6-2008krizhanovskaya.html. No date (in Russ.).
  8. Evstigneeva T.A., Pavlova N.A., Tyuterev S.L. Vestnik zashchity rastenii, 2012, 2: 27-33 (in Russ.).
  9. Benhamou N., Lafontaine P., Nicole J. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology, 1994, 84(12): 1432-1444.
  10. Prapagdee B., Kotchadat K., Kumsopa A., Visarathanonth N. The role of chitosan in protection of soybean from sudden death syndrome caused by Fusarium solani f. sp. glycines. Bioresourse Technol., 2007, 98(7): 1353-1358.
  11. Rashidova D.K. Primenenie biologicheski aktivnykh polimerov na khlopchatnike [The use of biologically active polymer chemicals at cotton cultivation]. Tashkent, 2015 (in Russ.).
  12. Popova E.V. Materialy Vserossiiskogos"ezda «Zashchita rastenii v usloviyakh reformirovaniya agropromyshlennogo kompleksa: ekonomika, effektivnost', ekologichnost'» [Proc. All-Russian Congr. «Plant protection and reforming agriculture: the economy, efficiency, environmental friendliness»]. St. Petersburg, 1995: 233-234 (in Russ.).
  13. Yudkin L.Yu., Tarlakovskii S.A. Materialy Vserossiiskogo s"ezda «Zashchita rastenii v usloviyakh reformirovaniya agropromyshlennogo kompleksa: ekonomika, effektivnost', ekologichnost'» [Proc. All-Russian Congr. «Plant protection and reforming agriculture: the economy, efficiency, environmental friendliness»]. St. Petersburg, 1995: 482 (in Russ.).
  14. Novozhilov K.V., Tyuterev S.L., Yakubchik M.S., Tarlakovskii S.A., Kolomiets A.F., Panarin E.F., Ismailov E.Ya., Gamza-Zade A.I., Ismailov V.Ya., Begunov I.I. Kompozitsiya na osnove vodnykh rastvorov khitozana, obladayushchaya biologicheskoi aktivnost'yu. Patent Rossiiskoi Federatsii ¹ 2127056. Vserossiiskii NII zashchity rastenii Rossiiskoi akademii sel'skokhozyaistvennykh nauk [Bioactive composition based on aqueous solutions of chitosan. Patent of Russian Federation ¹ 2127056. All-Russian Institute of Plant Protection of the Russian Academy of Agricultural Sciences. Appl. January 23, 1997. Publ. March 10, 1999.] (in Russ.).
  15. Boiko A.P. V sbornike: Zashchita i karantin rastenii [In: Plant protection]. Stavropol', 2000: 48-53.
  16. Rodriguez A., Ramirez M., Napoles M., Cardenas R. Antifungal activity of chitosan and one its hydrolysates on Pyricularia grisea Sacc fungus. Cultivos Tropicales, 2003, 24(2): 85-88.
  17. Maksimov V.I., Krushev L.T., Savchenkov S.N. Biotekhnologiya, 1992, 4: 60-62 (in Russ.).
  18. Kuprina E.E. Mikologiya i fitopatologiya, 2002, 36(4): 63-69 (in Russ.).
  19. Vasil'ev L.A. Gibel' epidermal'nykh kletok v list'yakh gorokha, vyzvannaya khitozanom. Avtoreferat kandidatskoi dissertatsii [Death of epidermal cells in pea leaves caused by chitosan]. Moscow, 2009 (in Russ.).
  20. Karpun N.N., Yanushevskaya E.B., Mikhailova E.V. Formation of plants nonspecific induced immunity at the biogenous stress (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(5): 540-549 CrossRef (in Engl.).
  21. Choi J.J., Klosterman S.J., Hadwiger L.A. A comparison of the effects of DNA damaging agents and biotic elicitors on the induction of plant defense genes, nuclear distortion, and cell death. Plant Physiol., 2001, 125: 752-762.
  22. Gryaznov V.P., Sirotina L.V. Praktikum po fiziologii rastenii [Practical works on plant physiology]. Belgorod, 2000 (in Russ.).
  23. Vasfilov S.P. Zhurnal obshchei biologii, 2011, 72(6): 436-454 (in Russ.).
  24. Vorob'ev V.N., Nevmerzhitskaya Yu.Yu., Khusnetdinova L.Z., Yakushen-
    kova T.P. Praktikum po fiziologii rastenii [Practical works on plant physiology]. Kazan', 2013 (in Russ.).
  25. Metodicheskie rekomendatsii po opredeleniyu ryada soedinenii v vodnykh i rastitel'nykh ob"ektakh (Adaptirovannye metody dlya Spectroquant NOVA400) [Assay of chemical compounds in water and plant samples — Guidelines]. INNO-Concept GmbH. SHtrausberg, Germaniya, 2008 (in Russ.).
  26. Azizov A., Tauschke M., Lentzsch P., Klose E., Akinshina N., Kara-
    syova T., Schmidt C. Verfahren zur Bewertung der Vitalität chlorophylltragender biologischer Proben. Deutsches Patentant. DE 112006000480. IPC: G01N 33/483. INNO-Concept GmbH, Strausberg, DE. Anmeldung 06.03.2006. Veröffentlichung 30.04.2015.
  27. Akinshina N.G., Azizov A.A., Karaseva T.A., Kloze E. Sibirskii ekologicheskii zhurnal, 2008, 2: 249-254 (in Russ.).
  28. Akinshina N.G., Azizov A.A., Karaseva T.A., Kloze E.O. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Sovremennaya fiziologiya rastenii: ot molekul do ekosistem» [Proc. Int. Conf. «Modern plant physiology: from molecules to ecosystems»]. Syktyvkar, 2007: 4-5 (in Russ.).
  29. Lysenko N.N., Chekalin E.I., Pozharskii S.M. Vestnik Orlovskogo gosudarstvennogo agrarnogo universiteta, 2013, 40(1): 70-76 (in Russ.).
  30. Kushnirenko M.D., Medvedeva T.N. Fiziologiya rastenii, 1969, 16(3): 43-52 (in Russ.).
  31. Mokronosov A.T. Fotosintez. Fiziologo-ecologicheskie i biokhimicheskie aspekty [Photosynthesis — eco-physiological and biochemical aspects]. Ìoscow, 2006 (in Russ.).
  32. Sheikha S., Al-Malki F. Growth and chlorophyll responses of bean plants to the chitosan applications. European Journal of Scientific Research, 2011, 50(1): 124-134.
  33. Farouk S., Ramadan A. Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology, 2012, 14: 14-26 CrossRef

back