doi: 10.15389/agrobiology.2015.5.665eng

UDC 633.11+633.49]:631.8.022.3:579.64

APPLICATION OF NEW BIOFERTILIZERS AND BIOLOGICAL
PRODUCTS IN THE CULTIVATION OF SPRING WHEAT (Triticum
aestivum
L.) AND POTATO (Solanum tuberosum L.)

G.Yu. Rabinovich, N.G. Kovalev, Yu.D. Smirnova

All-Russian Research Institute of Reclaimed Lands, Federal Agency of Scientific Organizations,
27, pos. Emmauss, Kalininskii Region, Tver’ Province, 170530 Russia,
e-mail vniimz@list.ru

Received August 14, 2015

 

Worldwide, the mineral fertilizers, because of their multiple negative effects, become less popular. Therefore, more producers prefer to use biofertilizer and biological preparations for obtaining high crop yield with good quality. Fertilizers fill the soil with additional material, while biologicals contribute to effective mobilization of soil organic matter and biota. At All-Russian Research Institute of Reclaimed Lands (VNIIMZ) the КMN biofertilizer (multi-purpose compost) has been developed. Advantage of the КMN as a base fertilizer lies in its high nutritional value, physiological, ecological and biogenic properties. Also, a novel biological product, the LPB, have been developed. It is characterized by the presence of physiologically relevant amounts of growth factors and energy sources in a combination favorable to the plant. The LPB composition allows to maintain soil fertility and crop productivity. In the present study, we evaluated the effectiveness of the KMN and LPB on the potato (Solanum tubetosum L.) variety Zhukovsky and spring wheat (Triticum aestivum L.) variety Irgina. The micro plot tests were conducted in 2011-2013 on the experimental field of VNIIMZ (Tver’ Province). With spring wheat, the KMN biofertilizer was used at a dose of 7 t/ha, and NPK dose was 300 kg/ha. Biological product (LPB stock preparation) was diluted with tap water as 1:300, 1:500 and 1:1000 and applied at 0.1 l/m2 by spraying plants. In control no fertilizers were used. In total, there were 12 combinations of plant treatment. In wheat, a total yield, weight of 1000 grains, and the grain protein content were estimated. With potato, only KMN (4 t/ha) was used as fertilizer. Potato plants were treated with LPB three times (at sprouting, budding and flowering) by means of a hand sprayer. In this, four LPB doses (0.05, 0.1, 0.2 and 0.3 l/m2) and two dilutions (1:30 and 1:300) of the stock preparation were used. Control potato plants were not treated with LPB. The potato yield and the tuber distribution by size were estimated. The intensity of redox processes in the soil was evaluated by the oxidative-reduction ratio (ORR) as the catalase to dehydrogenase activity rate. Spraying spring wheat with 1:300 LPB solution at 0.1 l/m2, additionally to КMN application, resulted in the highest yield among all the studied variants (27.5 kg/ha), and it was 15 % higher compared to LPB application together with NPK. The rich harvest was obtained due to larger grains. Mobilizing effect in the soil under spring wheat was higher if no basic fertilizers were used, and also when NPK was used without biopreparation. At the same time, the crop yield with NPK and without fertilizers was generally inferior to that obtained with NPK together with biologicals, when the yield increased due to activity of LPB microflora, and with KMN due to activation of microflora of biofertilizer and bioprparation, particularly at high concentration of the biopreparation (1:300). The highest yield of potatoes (372.1 kg/ha, including 352.1 kg/ha of commercial tubers) was obtained by using LPB (1:300) at 0.1 l/m2 with KMN as the basic fertilizer. Crop spraying with LPB was enough to supply plants with nutrients at the key growth phases. The КMN role was to supply plants at the early development with available nutrients. Note, the soil after harvesting remained free from chemical pollution and enriched with helpful microflora, contributing to the reproduction and preservation of soil fertility. Therefore, the developed biologicals can be successfully used in crop cultivation.

Keywords: multi-purpose compost, LPB, spring wheat, Triticum aestivum L., potato, Solanum tuberosum L., productivity, cultivation, agrotechnology.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Chintala R., Mollinedo J., Schumacher T.E., Papiernik S.K., Malo D.D., Papiernik S., Clay D.E., Kumar S., Gulbrandson D.W. Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials, 2013, 179: 250-257 (doi: 10.1016/j.micromeso.2013.05.023).
  2. Chintala R., Schumacher T.E., McDonald L.M., Clay D.E., Malo D.D., Papiernik S.K., Clay S.A., Julson J.L. Phosphorus sorption and availability in biochars and soil biochar mixtures. CLEAN-Soil Air Water, 2014, 42(5): 626-634 CrossRef
  3. Porceddu E. Agricoltura, biodiversita, biotechnologie. Rendiconti Accademia Nazionale XL. Memorie di Scienze Fisiche e Naturali, 2001, 25(1): 269-285.
  4. Rajesh C., Reddy K.S., Naidu M.V.S., Ramavataram N. Production and evaluation of compost and vermicompost from solid organic wastes. Asian Journal of Microbiology, Biotechnology, and Environmental Science, 2003, 5: 307-311.
  5. Buchanan B.B. Biochemistry and molecular biology of plants /B.B. Buchanan, W. Gruissem, R.L. Jones (eds.). American Society of Plant Physiologists, Rockville, Maryland, USA, 2006.
  6. Kumar S., Nakajima T., Mbonimpa E.G., Gautam S., Somireddy U.R., Kadono A., Lal R., Chintala R., Rafique R., Fausey N. Long-term tillage and drainage influences on soil organic carbon dynamics, aggregate stability, and carbon yield. Soil Sci. Plant Nutrit., 2014, 60: 108-118 CrossRef
  7. Prasad R., Hochmuth G.J., Boote K.J. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR. PLoS ONE, 2015, 10(1): e0117891 CrossRef
  8. Hefty B. Biological products and plant growth hormones.. Ag PhD, 30.01.2014 (retrieved 02.02.2015 from "http://www.agphd.com/blog/ag-phd-newsletter/2014/01/30/biological-products-and-plant-growth-hormones/"http://www.agphd.com/blog/ag-phd-newsletter/2014/01/30/biological-products-and-plant-growth-hormones/).
  9. Russia Agribusiness Report Q3 2010 (Part of BMI’s Industry Report & Forecasts Series). Business Monitor International, London, 2010.
  10. Mishra S.D. Hormon-potentiated crop growth and productivity. BARC Newslett., 2001, 205: 1-8.
  11. Ivantsov D.V. Agrotekhnika prirodnogo zemledeliya na sadovom uchastke [Organic agrotehnology for private farms]. Novosibirsk, 2006.
  12. Zlotnikov A.K. Biopreparat Al'bit dlya povysheniya urozhaya i zashchity sel'skokhozyaistvennykh kul'tur [Al’bit, the biological for crop yield increase and protection]. Podol'sk, 2006.
  13. Pylenok P.I., Sitnikov A.V. Agrokhimicheskii vestnik, 2007, 3: 20-21.
  14. Loginov O.N., Pugacheva E.G., Silishchev N.N., Boiko T.F., Galimzya-nova N.F. Shtamm bakterii Azotobacter vinelandii dlya polucheniya biopreparata dlya bor'by s kornevymi gnilyami pshenitsy i povysheniya kolichestva i kachestva urozhaya. Patent 2245918 (RF), MPK7 C12N1/20, A01N63/00 IB UNTS RAN; № 2003120768/13. Zayavl. 07.07.2003. Opubl. 10.02.2005 [A Azotobacter vinelandii strain as producer of the biological against wheat root rots providing an increase in yielding and quality. Patent 2245918 (RF), МПК7 C12N1/20, A01N63/00; № 2003120768/13. Appl. 07.07.2003. Publ. 10.02.2005]..
  15. Organic farming: Organic inputs and techniques. Entrepreneurial training manual. Tamil Nadu Agricultural University (retrieved 02.12.2015 from http://agritech.tnau.ac.in/org_farm/orgfarm_bio-fertilizertechnology.html).
  16. Wu Xiao-Li, Gu Xiao-ping, Wang Yang-dong. Linye kexue yanjiu. Forest Res., 2005, 4: 465-471.
  17. Gururaj R., Mallikarjunaiah R.R. Interaction effect of Azotobacter and phosphate-solubilizing fungi on seed germination and seedling growth of sunflower. Hella, 1994, 21: 33-40.
  18. Hajnal T., Govedarica M., Jelicic Z. Biofertilizers and maize production. Eco-konferencia. Novi Sad, Serbia, 2002: 241.
  19. Ivanov A.A., Matrosova L.E., Tremasov M.Ya. Doklady RASKHN, 2013, 4: 28-30.
  20. Ryakhovskaya N.I., Gainatulina V.V., Shalagina N.M., Shiyan V.I., Makarova M.A., Arguneeva N.Yu. Plodorodie, 2012, 5: 31-34.
  21. Kimura Y. Method and apparatus for producing organic fertilizer with the use of nitrogen fixing bacillus. Patent 5071462 (United States), C05F3/00; C05D3/02; C05F1/00. 902, Aza-Ameku, Naha, JP. Publ. 12.10.1991. FPO (retrieved 02.09.2015 from (http://www.freepa-tentsonline.com/5071462.html).
  22. Kannan J., Prasanthrajan M. Effect of organics and bio-fertilizer on yield of perennial Moringa in their soils. J. Ecobiol., 2006, 2: 169-173.
  23. Tumanov I.P., Malinin B.M., Kovalev N.G. Sposob prigotovleniya komposta. Patent 2141464 (RF) MPK 6 C05F3/00. Vseros. nauch.-issl. in-t melior. zemel' (RF).  № 97120053/13. Zayavl. 03.12.1997. Opubl.20.11.1999 [Method for compost production. Patent 2141464 (RF) МПК 6 C05F3/00. № 97120053/13. Appl. 03.12.1997. Publ. 20.11.1999].
  24. Kovalev N.G., Tumanov I.P., Malinin B.M  Sposob prigotovleniya komposta mnogotselevogo naznacheniya. Patent 2112764 (RF). Vser. nauch.-issl. in-t melior. zemel' (RF). № 97101103/13. Zayavl. 22.01.1997. Opubl.10.06.1998 [Methods for production of multifunctional compost. Patent 2112764 (RF). № 97101103/13. Appl. 22.01.1997. Publ. 10.06.1998].
  25. Rabinovich G.Yu. Biokonversiya organicheskogo syr'ya. Doktorskaya dissertatsiya [Bioconversion of organic material. DSc Thesis]. Tver', 2000.
  26. Rabinovich G.Yu., Fomicheva N.V., Kovalev N.G. Potochnaya liniya dlya polucheniya biologicheski aktivnogo sredstva v kontsentrirovannom vide. Patent na p.m. 50530 (RF) MPK C05F3/00 C05F11/00. Vseros. nauch.-issl. in-t melior. zemel' (RF). № 2005124429/22. Zayavl.01.08.2005. Opubl. 20.01.2006. Byul. № 02 [Production line for bioactive concentrates. Utility patent 50530 (RF) МПК C05F3/00 C05F11/00. № 2005124429/22. Appl. 01.08.2005. Publ. 20.01.2006. Bul. № 02].
  27. Rabinovich G.Yu., Fomicheva N.V., Smirnova Yu.D. Potochnaya liniya dlya polucheniya zhidkofaznogo biologicheski aktivnogo sredstva. Patent na p.m. 93392 (RF) MPK C05F3/00 C05F11/00. Vseros nauch.-issl. in-t melior. zemel' (RF). № 2009146436/22. Zayavl.14.12.2009. Opubl.27.04.2010. Byul. № 12 [Production line for liquid bioactive substance. Utility patent 93392 (РФ) МПК C05F3/00 C05F11/00. № 2009146436/22. Appl. 14.12.2009. Publ. 27.04.2010. Bul. № 12].
  28. Rabinovich G.Yu., Fomicheva N.V., Smirnova Yu.D. Sposob polucheniya zhidkofaz-nogo biosredstva dlya rastenievodstva i zemledeliya. Patent 2365568 (RF) MPK C05F11/00 Vseros nauch.-issl. in-t melior. zemel' (RF). № 2008112832/12. Zayavl.02.04.2008. Opubl. 27.08.2009. Byul. № 24 [Method of producing liquid biological for crop production and agriculture. Patent 2365568 (RF) МПК C05F11/00. № 2008112832/12. Appl. 02.04.2008. Publ. 27.08.2009. Bul. № 24].
  29. Tserling V.V. Diagnostikapitaniya sel'skokhozyaistvennykh kul'tur [Control of nutrient input in crops]. Moscow, 1990.
  30. Dospekhov B.A. Metodika polevogo opyta [Methods of field trials]. Moscow, 1985.
  31. Maisuryan N.A. Praktikum po rastenievodstvu [Practical works on crop production]. Moscow, 1970.
  32. Metody pochvennoi mikrobiologii i biokhimii /Pod redaktsiei D.G. Zvyagintseva [Methods of soil microbiology and biochemistry. D.G. Zvyagintsev (ed.)]. Moscow, 1991.
  33. Rabinovich G.Yu., Kovalev N.G., Fomicheva N.V., Rabinovich R.M. Protsessy i kachestvo produktov tverdofaznoi fermentatsii (metodicheskoe posobie) [Process and final product quality under solid-phase fermentation: guideline]. Moscow-Tver', 2003.

back