doi: 10.15389/agrobiology.2015.5.655eng

UDC 579.64:631.461.52:577.2

Supported by Russian Science Foundation (grant 14-26-00094). The equipment of ARRIAM Center for Genome Technologies, Proteomics and Cell Biology (St. Petersburg) was used

PHYLOGENETIC ANALYSIS OF Rhizobium STRAINS, ISOLATED
FROM NODULES OF Vavilovia formosa (Stev.) Fed.

A.K. Kimeklis1, V.I. Safronova1, I.G. Kuznetsova1, A.L. Sazanova1,
A.A. Belimov1, A.G. Pinaev1, E.P. Chizhevskaya1, A.R. Pukhaev2,
K.P. Popov3, E.E. Andronov1, N.A. Provorov1

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations,
3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail kimeklis@gmail.com;

2Gorsky State Agrarian University,
37, ul. Kirova, Vladikavkaz, Republic of North Ossetia-Alania, 362040 Russia;

3North-Ossetian Nature Reserve, 1, ul. Ch. Basievoi, Alagir, Republic of North Ossetia-Alania, 363240 Russia.

Received July 7, 2015

 

Among the 5 genera of tribe Fabeae the least studied is Vavilovia Fed., consisting of the only species Vavilovia formosa (Stev.) Fed. Vavilovia’s area of growth is limited by the highlands of Central and Eastern Caucasus, with only several known populations on the territories of Armenia, Dagestan, Norht Ossetia, Azerbaijan, Iran, Iraq, Siria, Turkey, and by the environmental conditions. The only phylogenetic research of rhizobia isolated from the nodules of vavilovia from the Nortn Ossetian population demonstrated significance of both slow-growing and fast-growing microsymbionts’ specific and genetic diversity. It was shown that all of the fast-growing isolates, belonging to Rhizobium leguminosarum species, carry nodX gene in their genomes. Three expeditions to the regions of Armenia, Dagestan and North Ossetia succeeded in finding and collecting plants of Vavilovia formosa (Stev.) Fed. with its nodules, from which later rhizobia isolates were obtained. We have chosen nineteen fast-growing isolates, derived from ten plants’ nodules, to identify their species affiliation, to trace geographical isolation and also to try to track down its genetic differences from rhizobia, which nodulate other plants of tribe Fabeae. To make this we sequenced ITS (internally transcribed spacer) fragment and nodA gene, and made screening of the isolates for the presence of nodX gene, which controls rhizobia host specificity. Obtained sequences were used to calculate genetic distances between groups of rhizobia, i.e. different regions isolates (Armenia, Dagestan, North Ossetia) and isolates from different plant hosts (vavilovia, pea, clover). Results of ITS sequencing showed that all strains involved in the analysis belong to R. leguminosarum (bv. viciae) species. ITS-dendrogram shows relatively high heterogeneity of isolates, but on nodA-dendrogram they form a very compact group. Difference in the structure of these dendrograms allows to assume that nodA gene, chained with the genes of host specificity, can be easily transferred within the populations of R. leguminosarum, providing unlimited combinations of specificity to vavilovia with different variants of bacterial chromosome. Comparison of genetic distances based on ITS-sequences for the isolates in this study shows tendency to geographic isolation between them. Data on nodA-based genetic distances along with the presence of nodX gene in the genomes of all R. leguminosarum strains in this study point out the presence of its host specificity within biovar viciae. It seems that correlation between strain origin and the genetic structure of nodA reflects presence of highly specific interactions among each group of R. leguminosarum strains with their plant-hosts, whereas correlations with the structure of ITS-loci reflect rhizobia adaptation to soil environment.

Keywords: Vavilovia formosa, Rhizobium leguminosarum, legume-rhizobia symbiosis.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Ljuština M., Miki A. Archaeological evidence for the domestication of lentil (Lens culinaris) and its distribution in Europe. J. Lentil Res., 2010, 4: 26-29.
  2. Gabrielyan E.T. Rod Vavilovia Fed. V knige: Flora Armenii. Tom 4 /Pod redaktsiei A.L. Takhtadzhyana [Flora of Armenia. V. 4. A.L. Takhtadzhyzn (ed.)]. AN SSR Armeniya, Erevan, 1962.
  3. Dzyubenko N.I., Dzyubenko E.A. Vavilovia formosa (Stev.) An. Fed. Agroekologicheskii atlas Rossii i sopredel'nykh stran: ekonomicheski znachimye rasteniya, ikh vrediteli, bolezni i sornye rasteniya / Pod redaktsiei A.N. Afonina, S.L. Grina, N.I. Dzyubenko, A.N. Frolova. [Online Agroecological atlas of Russia and neighbouring countries: economic plants, and their pests, weeds and diseases. A.N. Afonin, S.L. Grin, N.I. Dzyubenko, A.N. Frolov (eds.)] 2008 (online http://www.agroatlas.ru/ru/content/related/Vavilovia_formosa/).
  4. Karyagin I.I. Flora Azerbaidzhana. Tom 5 [Flora of Azerbaijan. V. 5]. Baku, 1954.
  5. Maxted N., Ambrose M. Peas (Pisum L.). In: Plant genetic resources of legumes in the Mediterranean /N. Maxted, S.J. Bennett (eds.). Kluwer, Dordrecht, 2001.
  6. Makasheva R.K., Drozd A.M., Adamova O.P., Golubev A.A. Perennial pea. Bull. Appl. Bot. Gen. Plant Breed., 1973, 51: 44-56.
  7. Kenicer G., Smýkal P., Vishyakova M., Mikic A. Vavilovia formosa, an intriguing Pisum relative. Grain Legumes, 2009, 51: 8-12.
  8. Safronova V.I., Kimeklis A.K., Chizhevskaya E.P., Belimov A.A., Andronov E.E., Pinaev A.G., Pukhaev A.R., Popov K.P., Tikhonovich I.A. Genetic diversity of rhizobia isolated from nodules of the relic species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek, 2014, 105: 389-399 CrossRef
  9. Ma S.W., Iyer V.N. New field isolates of Rhizobium leguminosarum biovar viciae that nodulate the primitive pea cultivar Afghanistan in addition to modern cultivars. Appl. Environ. Microbiol., 1990, 56: 2206-2212.
  10. Kozik A., Heidstra R., Horvath B., Kulikova O., Tikhonovich I., El-
    lis T.H.N., van Kammen A., Lie T.A., Bisseling T. Pea lines carrying syml or sym2 can be nodulated by Rhizobium strains containing nodX; sym1 and sym2 are allelic. Plant Sci., 1995, 108: 41-49 CrossRef
  11. Zhukov V., Radutoiu S., Madsen L.H., Rychagova T., Ovchinnikova E., Borisov A., Tikhonovich I., Stougaard J. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. MPMI, 2008, 21(12): 1600-1608 (doi: 10.1094/MPMI-21-12-1600).
  12. Novikova N., Safronova V. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiol Lett., 1992, 93: 261-268 CrossRef
  13. Allen O.N. Experiments in soil bacteriology. Burgess Publishing Co., Minneapolis, 3d ed., 1959: 117.
  14. Safronova V.I., Tikhonovich I.A. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains. In: Microbes in applied research: current advances and challenges /A. Mendez-Vilas (ed.). World Scientific Publishing Co., 2012: 331-334 CrossRef
  15. Rumyantseva M.L., Simarov B.V., Onishchuk O.P., Andronov E.E., Chizhevskaya E.P., Belova V.S., Kurchak O.N. Biologicheskoe raznoobrazie kluben'kovykh bakterii v ekosistemakh i agrotsenozakh: teoreticheskie osnovy i metody [Biodiversity of rhizobia in ecosystems and agrocenoses: theoretical bases and methods]. St. Petersburg—Pushkin, 2011.
  16. Normand P., Ponsonnet C., Nesme X., Neyra M., Simonet P. ITS analysis of prokaryotes. In: Molecular microbial ecology manual /A.D.L. Akkermans, J.D. van Elsas, F.J. de Bruijn (eds.). Kluwer Academic Publishers, Dordrecht, Netherlands, 1996: 1-12.
  17. Ponsonnet C., Nesme X. Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch. Microbiol., 1994, 161: 300-309 CrossRef
  18. Haukka K., Lindstrom K., Young J.P. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl. Environ. Microbiol., 1998, 64: 419-426.
  19. Andronov E.E., Pinaev A.G., Pershina E.V., Chizhevskaya E.P. Nauchno-metodicheskie rekomendatsii po vydeleniyu vysokoochishchennykh preparatov DNK iz ob"ektov okruzhayushchei sredy [Recommendations on highly purified DNAs isolation from environmental objects]. St. Petersburg, 2011.
  20. Okonechnikov K., Golosova O., Fursov M., the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, 28: 1166-1167 CrossRef
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28: 2731-2739 CrossRef
  22. Ovtsyna A.O., Rademaker G.-J., Esser E., Weinman J., Rolfe B.G., Tikhonovich I.A., Lugtenberg B.J.J., Thomas-Oates J.E., Spaink H.P. Comparison of characteristics of the nodX genes from various Rhizobium leguminosarum strains. MPMI, 1999, 12: 252-258 CrossRef
  23. Laguerre G., Nour S.M., Macheret V., Sanjuan J., Drouin P., Amar-
    ger N. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology, 2001, 147: 981-993 CrossRef

back