doi: 10.15389/agrobiology.2015.5.540eng

UDC 632.938:571.27

FORMATION OF PLANTS NONSPECIFIC INDUCED IMMUNITY
AT THE BIOGENOUS STRESS (review)

N.N. Karpun, E.B. Yanushevskaya, Ye.V. Mikhailova

All-Russian Research Institute of Floriculture and Subtropical Crops, Federal Agency of Scientific Organizations,
2/28, ul. Yana Fabriciusa, Sochi, 354002 Russia,
e-mail nkolem@mail.ru

Received February 16, 2015

 

Because of pesticide pollution and violation of protective reactions in biosystems, the ways to increase a non-specific natural resistance in plants is relevant. For the recent decades the mechanisms of pathogens-to-plant cell interaction were revealed. To identify chemical signals arising in the spots of plant infection by pathogenic microorganisms, the term «elicitor» was suggested (M. Yoshikawa et al., 1993; M. Thakur et al., 2013). Cell innate immunity is based on the recognition of phytopathogenic surface molecules, which is a primary signal for actuating the complicated network, including induction and phytoimmunity regulation (I. Tarchevskii, 2000). During signaling the essential role is played by proteins and small molecule messengers (salicylic acid and jasmonic acid, hydrogen peroxide, nitric oxide). Salicylic acid is involved in amplification and multiplication of the signals coming from the receptors into the plant cells, which ensures the timely activated protection. The earliest plant organism response to the pathogen introduction is a local generation of reactive oxygen species (oxidative burst), triggering a chain of subsequent defense mechanisms (S. Tyuterev, 2002). A significant increase in the level of reactive O2 and H2O2 has an inhibitory effect on the pathogenic microorganisms. The reactive oxygen species (ROS) are also suggested to play significant role in the membrane lypooxidation, cell wall modification and signal transduction (C. Richael et al., 1999; T. Pietras et al., 1997). A key role in ROS regulation is played by an antioxidant defense system, which function is to slow down and prevent intracellular oxidation of organic substances. In this, the antioxidant enzymes (superoxide dismutase, catalase, peroxidase) and low molecular weight antioxidants (ascorbic acid, glutathione, tocopherol, carotenoids, anthocyanins) are mainly involved (S.S. Gill et al., 2010). A defensive effect of peroxidases is due to oxidation of phenolic compounds to quinones (B. Barna et al.; 1995, E.N. Okey et al., 1997). The correlation was found between peroxidase activity in plant tissues and plant resistance to pathogens (T.B.  Kumeiko et al., 2009; N. Radhakrishnan et al., 2009). An increase in catalase activity is a defense reaction in cells during the next stages of biotic stress development (F.M. Shakirova, 2001). Starting from reception of signaling molecules of phyto-pathogens on the cell membrane all metabolic processes are controlled by resistance genes that regulate complex defense reactions (V. Repka et al., 2004). As a consequence, plants produce large variety of substances, carrying protection functions. The main ones are phytoalexins and PR-proteins (Yu. D’jakov, 2012). Due to stress proteins, the enzymes get activated, the membrane stabilization occurs, the activity of mitochondria and chloroplasts increases, and, therefore, the energy level rises (T. Chirkova, 2002). The data summarized herein are the basis for developing new concept for protection of agricultural crops by means of bilogicals with eliciting effect that boost plant immune state.

Keywords: elicitors, phytoalexins, genome, resistance genes, salicylic acid, jasmonate acid, peroxidase, catalase.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Egorov E.A. V sbornike nauchnukh trudov GNU SKZNIISiV. Tom 2. [In: Proc. GNU SKZNIISiV, V. 2] Krasnodar, 2013: 48-52.
  2. Yoshikawa M., Yamaoka N., Takeuchi Y. Elicitors: their significance and primary modes of action in the induction of plant defense reactions. Plant Cell Physiol., 1993, 34(8): 1163-1173.
  3. Dmitriev A.P. Fiziologiya rastenii, 2003, 50(3): 465-474.
  4. Tarchevskii I.A. Signal'nye sistemy kletok rastenii [Signaling systems of plant cells]. Moscow, 2002.
  5. Kessmann H., Kuhl A., Stahle Csech U., Oostendorp M., Staub T., Ruess W., Normeyer D., Rayals J. Systemisch aktivierte Resistenz in Pflanzen (SAR): Molekulare Grundlagen. Mitt. Biol. Bundesanst. Land- und Forstwirt, 1996, 321: 259.
  6. Mittler R., Del Pozo O., Meisel L., Lam E. Pathogen-induced programmed cell death in plants, a possible defense mechanism. Dev. Genet., 1997, 21(4): 279-289 CrossRef
  7. Thakur M., Sohal B.S. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry, 2013: 1-10 CrossRef
  8. Hahn M.G. Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol., 1996, 34: 387-412 CrossRef
  9. Garcia-Brugger A., Lamotte O., Vandelle E., Bourque S., Lecourieux D., Poinssot B., Wendehenne D., Pugin A. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact., 2006, 19(7): 711-724 CrossRef.
  10. Shkalikov V.A. Immunitet rastenii [Plant immunity]. Moscow, 2005.
  11. Dmitriev A.P. Tsitologiya i genetika, 2002, 36(3): 58-68.
  12. Tyuterev S.L. Nauchnye osnovy indutsirovannoi ustoichivosti rastenii [Induced tolerance in plants]. St. Petersburg, 2002.
  13. D'yakov Yu.T. Fundamental'naya fitopatologiya [Fundamental phytopathology]. Moscow, 2012.
  14. Tyuterev S.L. Zashchita i karantin rastenii, 2005, 4: 21-26.
  15. Pugin A., Guern J. Mode of action of elicitors: Involvement of plasma membrane functions. C. R. Acad. Sci., Ser. 3, 1996, 319(11): 1055-1061.
  16. Boyes D.C., McDowell J.M., Dang J.L. Plant pathology: Many roads lead to resistance. Curr. Biol., 1996, 6(6): 634-637 CrossRef
  17. Xing Ti, Higgins V.J., Blumwald E. Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell, 1997, 9(2): 249-259 CrossRef.
  18. Tarchevskii I.A. Fiziologiya rastenii, 2000, 47(2): 321-331.
  19. Yarullina L.G., Ibragimov R.I. Kletochnye mekhanizmy formirovaniya ustoichivosti rastenii k gribnym patogenam [Cell mechanisms of plant resistance to pathogenic fungi]. Ufa, 2006.
  20. Heil M., Bostock R.M. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of Botany, 2002, 89(5): 503-512 CrossRef
  21. van Loon L.C., van Strien E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 1999, 55(2): 85-97 CrossRef
  22. Hanania U., Furman N., Ron M., Zamir D., Eshed Y., Avni A. High affinity binding site for a fungal elicitor (EIX) exists only in plants responding to the elicitor. Plant Physiol., 1997, 114: 42.
  23. Ding C.K., Wang C.Y., Gross K.C., Smith D.L. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 2002, 214(6): 895-901 CrossRef
  24. Il'inskaya L.I., Gorenburg E.V., Chalenko G.I., Ozeretskovskaya O.L. Fiziologiya rastenii, 1996, 43(5): 713-720.
  25. Vimala R., Suriachandraselvan M. Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. Journal of Biopesticides, 2009, 2(1): 111-114.
  26. Alvarez A.L. Salicylic acid in machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol., 2000, 44: 429-442 CrossRef
  27. Anderson M.E. Glutathione. In: Free radicals: a practical approach /N.A. Punchard, F.J. Kelly (eds.). Oxford Univ. Press, Oxford, 1996.
  28. Bartling D., Radzio R., Steiner U., Weiler E.W. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Molecular cloning and functional characterization. Eur. J. Biochem., 1993, 216(2): 579-586 CrossRef
  29. Chamnongpol S., Willekens H., Moeder W., Langebartels C., Sandermann H., van Montagu M., Inze D., van Camp W. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. PNAS USA., 1998, 95(10): 5818-5823 CrossRef
  30. Seskar M., Shulaev V., Raskin I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiol., 1998, 116(1): 387-392 CrossRef
  31. Meuwly Ph., Summermatter K., Coquoz J.L., Buchala A., Molders W., Metraux J.-P. Accumulation of salicylic acid in cucumber, Arabidopsis and potato plants infected with pathogens. In book: Mater. 15th Int. Bot. Congr. Yokogama, 1993: 395.
  32. Chivasa S., Murphy A.M., Naylor M., Carr J.P. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell, 1997, 9(4): 547-557 CrossRef
  33. Shirasu K., Nakajima H., Rajasekhar V.K., Dixon R.A., Lamb C. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell, 1997, 9(2): 261-270 CrossRef
  34. Lamb C., Dixon R.A. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48: 251-275 CrossRef
  35. Mehdy M.C. Active oxygen species in plant defense against pathogens. Plant Physiology, 1994, 105(2): 467-472.
  36. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection. Biochem. J., 1997, 322(3): 681-692 CrossRef
  37. Grant J.J., Loake G.J. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol., 2000, 124(1): 21-30 CrossRef
  38. Gessler N.N., Aver'yanov A.A., Belozerskaya T.A. Biokhimiya, 2007, 72(10): 1342-1364.
  39. Troshina N.B. Perekis' vodoroda kak regulyator ustoichivosti rastenii i kallusovpshenitsy k gribnym patogenam. Avtoreferat doktorskoi dissertatsii [H2O2 as a regulator of wheat plant and callus resistance to pathogenic fungi. DSci Thesis]. St. Petersburg 2007.
  40. Huckelhoven R., Kogel K.H. Reactive okhugen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance. Planta, 2003, 216: 891-902.
  41. Lamb C., Dixon R.A. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48: 251-275 CrossRef
  42. Richael C., Gilchrist D. The hypersensitive response: A case of hold or fold. Physiol. and Mol. Plant Pathol. 1999, 55(1): 5-12 CrossRef
  43. Pietras T., Malolepsza U., Witusik A. Udzial nadtlenku wodoru i reaktywnych postaci tlenu wytwarzanych przez oksydaze NADPH w odpornosci roslin przeciwko patogenom. Wiad. Bot., 1997, 41(3-4): 43-50.
  44. Huckelhoven R., Kogel K.-H. Untersuchungen zur Rolle reaktiver Sauerstoffspezies in der induzierten Resistenz von Gerste gegenuber dem Echten Mehltaupilz. Mitt. Biol. Bundesanst. Land- und Forstwirt, 1998, 357: 148.
  45. Kreslavskii V.D., Los' D.A. Fiziologiyarastenii, 2012, 59(2): 163-178.
  46. Desikan R., Mackerness S.A.-H., Hancock J.T., Neill S.J. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol., 2001, 127: 159-172 CrossRef
  47. Galvez-Valdivieso G., Mullineaux P.M. The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol. Plant., 2010, 138(4): 430-439 CrossRef
  48. Jaspers P., Kangasjarvi J. Reactive oxygen species in abiotic stress signaling. Physiol. Plant., 2010, 138(4): 405-413 CrossRef
  49. Vranova E., Inze D., van Breusegem F. Signal transduction during oxidative stress. J. Exp. Bot., 2002, 53(372): 1227-1236 CrossRef
  50. Kreslavskii V.D., Lyubimov V.Yu., Kotova L.M. Fiziologiya rastenii, 2011, 58(2): 262-267.
  51. Ryabchinskaya T.A., Kharchenko G.L., Sarantseva N.A., Bobresho-
    va I.Yu., Zlotnikov A.K. Vestnik zashchity rastenii, 2008, 2: 34-41.
  52. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 2004, 55: 373-399 CrossRef
  53. Kolupaev Yu.E. Vestnik Khar'kovskogo natsional'nogo agrarnogo universiteta. Seriya Biologiya, 2007, 3: 6-26.
  54. Kuznetsov Vl.V., Dmitrieva G.A. Fiziologiya rastenii [Plant physiology]. Moscow, 2005.
  55. Shao H.-B., Chu L.-Y., Lu Z.-H., Kang C.-M. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci., 2008, 4(1): 8-14 CrossRef
  56. Mullineaux P.M., Karpinski S., Baker N.R. Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol., 2006, 141(2): 346-350 CrossRef
  57. Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol.Biochem., 2010, 48(12): 909-930 CrossRef
  58. Foyer C., Lopez-Delgado H., Dat J.F., Scott I.M. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plant., 1997, 100: 241-245 CrossRef
  59. Chumakov A.E., Zakharova T.I. Vredonosnost' boleznei sel'skokhozyaistvennykh kul'tur [Harmfulness of crop diseases]. Moscow, 1990.
  60. Bolwell G.P., Daudi A. Reactive oxygen species in plant-pathogen interactions. signaling and communication in plant: Book 2. Reactive oxygen spesies in plant signaling /F. Baluska, J. Vivanco (eds.). Berlin, Heidelberg, 2009.
  61. Barna B., Adam A.L., Gullner G., Kiraly Z. Role of antioxidant systems and juvenility in tolerance of plants to diseases and abiotic stresses. Acta phytopathol. et entomol. Hung., 1995, 30(1-2): 39-45.
  62. Okey E.N., Duncan E.J., Sirju-Charran G., Sreenivasan T.N. Phytophthora canker resistance in cacao: Role of peroxidase, polyphenoloxidase and phenylalanine ammonia-lyase. J. Phytopathol., 1997, 145(7): 295-299 CrossRef
  63. Khorosheva T.M., Suslova T.A., Noritsina M.V., Lysova L.A. V sbornike: Zashchita rastenii ot vreditelei i boleznei [In: Plant protection against pests and diseases]. Saratov, 1996: 70-76.
  64. Kumeiko T.B., Ol'khovskaya T.A. Risovodstvo, 2009, 14: 55-58.
  65. Radhakrishnan N., Balasubramanian R. Salicylic acid induced defense responses in Curcuma longa (L.) against Pythium aphanidermatum infection. Crop Protect., 2009, 28(11): 974-979 CrossRef
  66. Graskova I.A., Kuznetsova E.V., Voinikov V.K. Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Biologiya. Ekologiya, 2008, 1(1): 44-48.
  67. Graskova I.A. Borovskii G.B. Fiziologiya rastenii, 2004, 51(5): 692-697.
  68. Medvedev S.S. Fiziologiya rastenii [Plant physiology]. St. Petersburg, 2012.
  69. Tarchevskii I.A. Fiziologiya rastenii, 2000, 47(2): 321-331.
  70. Chen G., Asada K. Ascorbate peroxidase in tea leaves occurrence of two isozymes and differences in their enzymatic and molecular properties. Plant Cell Physiol., 1989, 30: 987-998.
  71. Meloni D.A., Oliva M.A., Martinez C.A., Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot., 2003, 49(1): 69-79 CrossRef
  72. Nunez M., Mazzafera P., Mazorra L.M., Siquira W.J., Zullo M.A.T. Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol. Plant., 2003, 47(1): 67-70 CrossRef
  73. Shetty N.P., Jorgensen H.J.L., Jensen J.D., Collinge D.B., Shetty H.S. Roles of reactive oxygen species in interaction between plants and pathogen. Eur. J. Plant Pathol., 2008, 121(3): 267-280 CrossRef
  74. Repka V., Fisherova I., Silharova K. Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. Biol. Plant., 2004, 48(2): 273-283 CrossRef
  75. Hung K.T., Hsu Y.T., Kao C.H. Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol. Plant., 2006, 127(2): 293-303 CrossRef
  76. Liu Yu., Pan Ts. Kh., Yan Kh.R., Liu Yu.Yu., Khuan V.D. Fiziologiya rastenii, 2008, 55(6): 851-862.
  77. Maksimov I.V., Sorokan' A.V. Fiziologiya rastenii, 2011, 58(2): 243-251.
  78. Ozertskovskaya O.L., Vasyukova N.I. Fiziologiya rastenii, 2006, 53(4): 546-553.
  79. Titova S.A. Vliyanie fitopatogennykh mikroorganizmov na enzimaticheskuyu aktivnost' rasteniya-khozyaina Glycine max (L.) Merr. i Glycine soja Sieb. et Zucc. Avtoreferat kandidatskoi dissertatsii [Enzymatic activity in Glycine max (L.) Merr. and Glycine soja Sieb. et Zucc. as influenced by phytopathogenic microorganisms. PhD Thesis]. Blagoveshchensk, 2014.
  80. Semenova E.A., Titova S.A., Dubovitskaya L.K. Fundamental'nye issledovaniya, 2011, 4(12): 708-711.
  81. Avetisyan G.A., Babosha A.V. Byulleten' Glavnogo botanicheskogo sada, 2013, 4: 30-36.
  82. Pakhomova V.M. Tsitologiya, 1995, 37(1): 66-91.
  83. Shakirova F.M. Nespetsificheskaya ustoichivost' rastenii k stressovym faktoram i ee regulyatsiya [Plant non-specific tolerance to stresses and its regulation]. Ufa, 2001.
  84. Grechkin A.N. Bioorganicheskaya khimiya, 2000, 26(10): 779-781.
  85. De Wit P.J.G.M. Fungal avirulence genes and plant resistance genes: unraveling the molecular basis of gene-for-gene interactions. Adv. Bot. Res., 1995, 21: 147-185 CrossRef
  86. Lykova N.A. Effekt prevegatsii. Ekologicheskie posledstviya [Effect of pre-vegetation. Environmental consequences]. St. Petersburg, 2009.
  87. Hammerschmidt R. Phytoalexins: what we have learned after 60 years? Ann. Rev. Phytopathol., 1999, 37: 28-36 CrossRef
  88. Kuc J. Phytoalexins, stress metabolism and disease resistance in plants. Ann. Rev. Phytopathol., 1993, 33: 275-297 CrossRef
  89. Perkovskaya G.Yu., Kravchuk Zh.N. Fiziologiya rastenii, 2004, 51(5): 680-685.
  90. Broekaert W.E., Terras F.R.G., Cammue B.P.A., Osborn R.W. Plant defensins: novel antimicrobial peptides as component of the host defense systems. Plant Physiol., 1995, 108(4): 1353-1358 CrossRef
  91. Huub J.M., Linthorst J.M., Van Loon L.C. Pathogenesis-related proteins in plants. Critic. Rev. Plant Sci., 1991, 10(2): 123-150 CrossRef
  92. Selitrennikoff C.P. Antifungal proteins. Appl. Environ. Microbiol., 2001, 67(7): 2883-2894 CrossRef
  93. Chirkova T.M. Fiziologicheskie osnovy ustoichivosti rastenii [Physiological bases fro plant resistance]. St. Petersburg,  2002
  94. Koshkin E.I. Fiziologiya ustoichivosti sel'skokhozyaistvennykh kul'tur [Physiology of cultivated plant resistance]. Moscow, 2010.

back