doi: 10.15389/agrobiology.2015.5.685eng

UDC 632.937.15

Supported by Ministry of Education and Sciences of the Russian Federation (Agreement No 14.604.21.0024, RFMEFI60414X0024).


S.D. Grishechkina

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations,
3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,

Received June 17, 2015


Various groups of agents are involved in biological crop protection to control pests and diseases. Of them, Bacillus genus possessing activity against harmful insects and phytopathogens is most promising and widely used. In this, the biologicals based on Bacillus thuringiensis (Bt) dominate. More than 70 varieties of Bt have been identified. These bacteria can survive for a long time after treatment. Preparations based on three Bt serovars (A, B, C) are mostly used for insects’ biocontrol. Serovar A Bt subspecies can form crystal endotoxins which are active against Lepidoptera; serovar B Bt subspecies attack the larvae of mosquitoes and black flies, and phytophagous Diptera; and serovar C Bt subspecies are active against Coleoptera beetles. A new serovar F (fungi) of this bacillus was identified. Physiological and biochemical properties of Bacillus thuringiensis provide the assimilation of nutrient substrates and antibiosis against biocenosis partners. Batsikol, the biological preparation based on B. thuringiensis var. darmstadiensis (H10) with entomopathogenic action, was created at All-Russian Research Institute of Agricultural Microbiology (St. Petersburg). Batsikol contains components of culture liquid, spores, insecticidal and fungicidal exo- and endotoxins, due to which it possesses multifunctional properties. The article presents the mechanisms of entomopathogenic and antifungal action of microbial preparations based on Bt. Results of testing Batsikol effectiveness against various pests and diseases in field trials and vegetation experiments are shown. Liquid form of biological product was used in the study (spore titer of 3.5×109/ml). Field and vegetation tests were carried out in 1994-2013 in different regions of Russia (Leningrad, Novosibirsk, Volgograd region, North Ossetia, Stavropol and Primorsky regions). Batsikol was sprayed against phytophagous pests on vegetating plants. The efficacy against pests varied from 50 to 100 %. Different modes of application against phytopathogen were tested according to the type of parasitism and environmental characteristics of fungi (i.e., spraying, irrigation, seed treatment). In field experiments the efficacy of spraying strawberry plants against gray mold was 60-74 %. Soil watering was used against Fusarium wilt on tomatoes and flax with efficacy of 74-87 % and 34-42 %, respectively. When seeds were treated prior to sowing the efficacy was 66-71 % in case of soaking barley seeds against root rot, and 40-45 % while soaking potato tubers against damping-off. Based on the tests conducted with Batsikol in different regions of Russia, the spectrum of its activities against wide range of phytophagous pests and pathogenic fungi was revealed on different crops. The obtained data expand the understanding of Bt biology and, in particular, the action spectrum against various pests and diseases dangerous for many cultivated plants. Presented materials allow considering Bacillus thuringiensis as the basis of microbiological preparations with a multifunctional activity. The obtained data will allow expanding the scope of its application, and it will help to improve ecological situation.

Keywords: Bacillus thuringiensis, Batsikol, phytophagous insects, phytophathogenic fungi, biological efficiency.


Full article (Rus)

Full text (Eng)


  1. Smirnov O.V., Grishechkina S.D. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 3: 123-126.
  2. Kandybin N.V., Patyka T.I., Ermolova V.P., Patyka V.F. Mikrobiokontrol' chislennosti nasekomykh i ego dominanta Bacillus thuringiensis /Pod redaktsiei N.V. Kandybina [Microbiocontrol of insects, and Bacillus thuringiensis as a predominate agent]. St. Petersburg—Pushkin, 2009.
  3. Shternshis M.V. V sbornike nauchnykh tudov: Mikrobnye biotekhnologii: fundamental'nye i prikladnye aspekty. Tom 5 [In: Microbilal biotechnologies: fundamental and practical aspects. V. 5]. Minsk, 2013: 394-410.
  4. Bakhvalov S.A., Tsvetkova V.P., Shpatova T.V., Shternshis M.V., Grishechkina S.D. Sibirskii ekologicheskii zhurnal, 2015, 4: 643-650.
  5. Polanczyk R.A., Pires da Silva R.F., Fiuza L.M. Effectiveness of Bacillus thuringiensis against Spodoptera frugipera (Lepidoptera: Noctuidae). Brazil. J. Microbiol., 2000, 31: 165-167 CrossRef
  6. Zhong C.H., Ellar D.J., Bishop A., Johnson C., Lin S.S., Hart E.R. Characterization of Bacillus thuringiensis d-endotoxin which is toxic to insects in three orders. J. Invert. Pathol., 2000, 76: 131-139.
  7. Yoshida S., Hiradate S., Tsulamoto T., Hatakeda K., Shirata A. Antimicrobial activity of culture filtrate of Bacillus amyloligauefaciens Rc-2 isolated from mulberry leaves. Phythopathol., 2001, 91: 181-187.
  8. Knaak N., Rohr A., Fiuza L. In vitro effect of Bacillus thuringiensis strains and Cry-proteins in phytopathogenic fungi of paddy rice-field. Brazil. J. Microbiol., 2007, 38(3): 526-530 CrossRef
  9. Mojica-Marin V., Luna-Olvera H., Sandoval-Coronado C., Pereyra-Alferes B., Morales-Ramos L., Hernandez-Luna C., Alvarado-Gom-
    ez O. Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper. Afr. J. Biotechnol., 2008, 7(9): 1271-1276.
  10. Eswarapriya B., Gopalsamy B., Kameswari B., Meera R., Devi P. Insecticidal activity of Bacillus thuringiensis IBt-15 strain against Plutella xycostella. Int. J. Pharm Tech Res., 2010, 2(3): 2048-2053.
  11. Heydari A., Pessarakli M. A review on biological control of fungal plant pathogens using microbial antagonists. J. Biol. Sci., 2010, 1(4): 273-290 CrossRef
  12. Pane C., Villecco D., Campanile F., Zaccardelli M. Novel strains of Bacillus isolated from compost and compost-amended soils as biological control agents against soil-borne phytopathogenic fungi. Biol. Sci. Technol., 2012, 22(12): 1373-1388 CrossRef
  13. Akram W., Mahboob A., Javed A. Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. Eur. J. Microbiol. Immunol., 2013, 3: 275-280 CrossRef
  14. Tao A., Pang F., Huang S., Yu G., Li B., Wang T. Characterization of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci. Tecnol., 2014, 24(8): 901-924 CrossRef
  15. Siegel J.P. The mammalian safety Bacillus thuringiensis based insecticides. J. Invert. Pathol., 2001, 77: 13-21 CrossRef
  16. Zeinalov A.S., Churilina T.N. Plodovodstvo i yagodovodstvo Rossii (Moscow), 2012, 2(1): 192-199.
  17. Loseva O., Ibrahim M., Candas M., Koller C.N., Bauer L.S., Bulla L.A. Changes in protease activity and Cry3Aa toxin binding in the Solorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Insect Biochem. Mol. Biol., 2002, 32: 567-577 CrossRef
  18. Wagner W., Möhrlen F., Schnetter W. Characterization of the proteolytic enzymes in the midgut of the European Cockchafer, Melolontha melolontha (Coleoptera: Scarabaidae). Insect Biochem. Mol. Biol., 2002, 32: 803-814 CrossRef
  19. Saguez J., Hainez R., Cherqui A., Van Wuytswinkel O., Jeanpierre H., Lebon G., Noiraud N., Beaujean A., Jouanin L., Laberche J.-C., Vincent C., Giordanengo P. Unexpected effects of chitinases on the peach-potato aphid (Myzus persicae Sulzer) when delivered via transgenic potato plants (Solanum tuberosum Linne) and in vitro. Transgenic Research, 2005, 14: 57-67 CrossRef
  20. Reyes-Ramirez A., Escudero-Abarca B.I., Aguilar-Uscanga G., Hayward-Jones P.M., Barboza-Corona J.E. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci., 2004, 69(5): M131-M134 CrossRef
  21. Xiao L., Xie C.C., Cai J., Lin Z.J., Chen Y.H. Identification and characterization of chitinase producing Bacillus slowing significant antifungal activity. Cur. Microbiol., 2009, 58(5): 528 CrossRef
  22. Seo D.J., Nguyen D.M., Song Y.S., Jung W.J. Induction of defense response against Rhizoctonia solani in cucumber plant by endophytic bacterium Bacillus thuringiensis GS1. J. Microbiol. Biotechnol., 2012, 22(3): 407-415 CrossRef.
  23. Martinez-Absalón S., Rojas-Solís D., Hernandez-León R., Prieto-Barajas C., Orozco-Mosqueda M., Peña-Cabriales J., Sakuda S., Valencia-Cantero E., Santoyo G. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Sci. Technol., 2014, 24(12): 1349-1362 CrossRef
  24. Yu G.Y., Sinclair J.B., Hartman G.L., Bertagnolli B.L. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem., 2002, 34: 955-963 CrossRef.
  25. Shrestha A., Sultana R., Chae J.-C., Kim K., Lee K.J. Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. Eur. J. Plant Pathol., 2015, 142: 577-589 CrossRef
  26. Hathout Y., Ho Y., Ryzhov V., Demirev P., Fenselau C. Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J. Nat. Products, 2000, 63: 1492-1496.
  27. Kim P.I., Bai H., Bai D., Chae H., Chung S., Kim Y., Park R., Chi Y.-T. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol., 2004, 97: 942-949 CrossRef
  28. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 2005, 56(4): 845-857 CrossRef
  29. Zhou Y., Choi Y., Sun M., Yu Z. Novel role of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol., 2008, 80(4): 563-572 CrossRef
  30. Kim P.I., Ryu J., Kim Y.H., Chi Y.-T. Production of biosurfactant lipopetides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol., 2010, 20(1): 138-145.
  31. Yánez-Mendizábal V., Zeriouh H., Viñas I., Torres R., Usall J., de Vicente A., Pérez-García A., Teixidó N. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Europ. J. Plant Pathol., 2012, 132: 609-619 CrossRef
  32. Elkahoui S., Djébalin N., Karkouch I., Hadj Ibrahim A., Kalai L., Bachkouel S., Tabbene O., Limam F. Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum. Appl. Biochem. Microbiol., 2014, 50(2): 161-165 CrossRef
  33. Assaturova A.M. Perspektivnye shtammy bakterii — produtsenty mikrobiopreparatov dlya snizheniya vredonosnosti fuzarioza na podsolnechnike. Avtoreferat kandidatskoi dissertatsii [Promising bacterial strains as producers for the microbiologicals effective against Fusarium fungi in sunflower. PhD Thesis]. St. Petersburg—Pushkin, 2009.
  34. Kamenek L.K., Kamenek D.V., Tyul'pineva A.A., Terpilovskii M.A. Biotekhnologiya, 2008, 5: 76-83.
  35. Kandybin N.V., Smirnov O.V., Barbashova N.M. Materialy Vserossiiskogo nauchno-prakticheskogo soveshchaniya [Proc. All-Russia Meeting]. Pushchino, 1994: 179-181.
  36. Grishechkina S.D., Smirnov O.V., Kandybin N.V. Mikologiya i fitopatologiya, 2002, 36(1): 58-62.
  37. Kotova V.V. Metodicheskie ukazaniya po izucheniyu vredonosnosti kornevoi gnili yarovoi pshenitsy i yachmenya i metody rascheta poter' ot boleznei [Estimation of damage from root rot in spring wheat and barley with calculation of losses: recommendations]. Leningrad, 1979.
  38. Sidorova S.F., Popov V.I. Metodicheskie ukazaniya po izucheniyu vertitsilleznogo i fuzarioznogo uvyadaniya sel'skokhozyaistvennykh rastenii [Study of Verticillum and Fusarium wilt in cultivated plants: guidelines]. Leningrad—Pushkin, 1980.
  39. Vlasov Yu.I., Gavrilova E.A., Minkevich I., Chumakov A.E. Osnovnye metody fitopatologicheskikh issledovanii [Basic methods of phytopathology]. Moscow, 1974.
  40. Loshakova N.I., Krylova T.V., Kudryavtseva L.P. Metodicheskie ukazaniya po fitopatologicheskoi otsenke ustoichivosti l'na-dolguntsa k boleznyam [Phytopathological estimation of flax plants resistance to diseases: guidelines]. Torzhok, 2006.
  41. Tupenevich S.M., Khokhryakov M.K., Chumakov A.E. Rekomendatsii po bor'be s kornevymi gnilyami pshenitsy i yachmenya [Wheat and barley protection measures against root rots]. Leningrad, 1962.
  42. Metodicheskie ukazaniya po otsenke selektsionnogo materiala na ustoichivost' k fitoftorozu, rizoktoniozu, bakterial'nym boleznyam i mekhanicheskim povrezhdeniyam [Estimation of breeding material on resistance to blight, sheath blight, bacterial diseases and mechanical damage: guidelines]. Moscow, 1980.
  43. Smirnov O.V., Borodavko N.B., Grishechkina S.D. Tezisy dokladov 1-go Vserossiiskogo s"ezda po zashchite rastenii [Proc. 1st All-Russia meeting on plant protection]. St. Petersburg, 1995: 367-368.
  44. Smirnov O.V. Patotipy Bacillus thuringiensis i ekologicheskie osnovy ikh ispol'zovaniya v zashchite rastenii. Avtoreferat doktorskoi dissertatsii [Bacillus thuringiensis pathotypes and ecological bases for their use in plant protection. DSc Thesis]. St. Petersburg—Pushkin, 2000.
  45. Grishechkina S.D. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Agrotekhnicheskii metod zashchity rastenii» [Proc. Int. Conf. «Agrotechnologies for plant protection»]. Krasnodar, 2013: 313-316.
  46. Grishechkina S.D., Kuznetsova A.V. Zashchita i karantin rastenii, 2012, 3: 28-29.
  47. Anisimov A.I., Dobrokhotov S.A., Grishechkina S.D. Materialy Mezhdunarodnoi konferentsii «Infektsionnaya patologiya chlenistonogikh» [Proc. Int. Conf. «Infectious diseases in arthropods»]. St. Petersburg—Pushkin, 2012: 9-11.
  48. Kandybin N.V., Smirnov O.V., Grishechkina S.D., Stolova O.V., Kra-
    savina L.P. Materialy VII s"ezda Rossiiskogo entomologicheskogo obshchestva [Proc. VII meeting of Russian Entomological Society]. St. Petersburg, 1997: 177-178.
  49. Grishechkina S.D., Smirnov O.V., Kandybin N.V. Tezisy dokladov 2-go Vserossiiskogo s"ezda po zashchite rastenii [Proc. 2d All-Russia meeting on plant protection]. St. Petersburg, 2005: 155-157.
  50. Grishechkina S.D., Smirnov O.V. Vestnik zashchity rastenii, 2010, 3: 44-50.
  51. Grishechkina S.D., Loshakova N.I. Agro XXI, 2013, 10-12: 18-19.
  52. Grishechkina S.D. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Zashchita rastenii v sovremennykh tekhnologiyakh vozdelyvaniya sel'skokhozyaistvennykh kul'tur» [Proc. Int. Conf. «Plant protection in current crop cultivation»]. Krasnoobsk, 2013: 112-114.
  53. Tsvetkova V.P., Shternshis M.V., Grishechkina S.D. Mat. Mezhd. nauch.-prakt. konf. «Innovatsionnye tekhnologii primeneniya biologicheskikh sredstv zashchity rastenii v proizvodstve organicheskoi sel'skokhozyaistvennoi produktsii» [Proc. Int. Conf. «Innovations in use of plant protecting biologicals in organic agriculture»]. Krasnodar, 2014: 301-305.