doi: 10.15389/agrobiology.2015.5.648eng

UDC 631.8:632.9:579.64

Supported by Russian Science Foundation (project No. 14-16-00146)


V.K. Chebotar’, A.V. Shcherbakov, E.N. Shcherbakova, S.N. Maslennikova,
A.N. Zaplatkin, N.V. Mal’fanova

All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations,
3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,

Received April 24, 2015


Endophytic called bacteria are those colonizing the internal tissues of plants without causing disease and not rendering negative influence on its development. There are great prospects for search, selection and study of new species of endophytic bacteria, improving the development of plants, with the aim of creating new microbial preparations for adaptive crop production. Since bacterial endophytes colonize the same ecological niches in the plant as phytopathogenic microorganisms, they are a promising agent for biocontrol of phytopathogens. Classical studies of biodiversity of endophytic bacteria based on a characterization of isolates obtained from internal plant tissues after surface sterilization. Endophytic bacteria are able to improve phosphorus nutrition of plants, to produce IAA and siderophores. It is shown that endophytic bacteria are capable of producing vitamins, have a number of additional properties necessary for the improvement of plant development, such as: regulation of osmotic pressure, regulation of stomata, modification of root development of plants, regulation of nitrogen nutrition of plants. Endophytic bacteria are able to reduce or prevent the negative effects of pathogenic microorganisms on plants. Inoculation of plants by endophytic bacteria is able to significantly reduce the harm caused to plants by pathogenic fungi, bacteria, viruses, insects and nematodes. Unique strains of endophytic bacteria can be used directly for inoculation of seeds or seedlings, reducing, thus, the influence of biotic and abiotic factors on the plant, due to the active colonization of internal tissues of plants and subsequent positive biochemical and physiological effect on the plant. While in endosphere, endophytes have a significant advantage over organisms that live in the rhizosphere and phyllosphere due to the stable pH, humidity, flow of nutrients and lack of competition from a large number of microorganisms. For the inoculation of plants with endophytic bacteria do not require large amounts of inoculum, taking into account high specificity of such plant-microbe symbiosis and competitiveness of endophytic bacteria. This technique can be very attractive for biotechnological productions, seeking the replacement of traditional chemical pesticides.

Keywords: endophytic bacteria, biodiversity, plant-microbial interaction, plant growth promotion biocontrol, secondary metabolites, the genome of bacteria, microbial preparations.


Full article (Rus)

Full text (Eng)



  1. Lindow S.E., Brandl M.T. Microbiology of the phyllosphere. Appl. Environ. Microbiol., 2003, 69: 1875-1883 CrossRef
  2. Kuiper I., Lagendijk E.L., Bloemberg G.V., Lugtenberg B.J. Rhizoremediation: a beneficial plant—microbe interaction. Mol. Plant Microbe Interact., 2004, 17: 6-15 CrossRef
  3. Berg G., Eberl L., Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol., 2005, 7: 1673-1685 CrossRef
  4. Holliday P. A dictionary of plant pathology. Cambridge University Press, Cambridge, 1989.
  5. Schulz B., Boyle C. What are endophytes? In: Microbial root endophytes /B.J.E. Schulz, C.J.C. Boyle, T.N. Sieber (eds.). Springer-Verlag, Berlin, 2006: 1-13.
  6. Strobel G., Daisy B., Castillo U., Harper J. Natural products from endophytic microorganisms. J. Nat. Prod., 2004, 67: 257-268 CrossRef
  7. Ryan R.P., Germaine K., Franks A., Ryan D.J., Dowling D.N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett., 2008, 278: 1-9 CrossRef
  8. Lima A.C.F., Pizauro Junior J.M., Macari M., Malheiros E.B. Efeito do uso de probiotico sobre o desempenho e a atividade de enzimas digestivas de frangos de corte. Revista Brasileira de Zootecnia, 2003, 32: 200-207.
  9. Koumoutsi A., Chen X.-H., Henne A., Liesegang H., Hitzeroth G., Franke P., Vater J., Borriss R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol., 2004, 186(4): 1084-1096 CrossRef
  10. Azevedo J.L., Maccheroni J. Jr., Pereira O., Ara W.L. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electr. J. Biotech., 2000, 3: 40-65 CrossRef
  11. Hallmann J., Quadt-Hallmann A., Mahaffee W.F., Kloepper J.W. Bacterial endophytes in agricultural crops. Can. J. Microbiol., 1997, 43: 895-914 CrossRef
  12. Hallmann J., Quadt-Hallmann A., Rodriguez-Kabana R., Kloepper J.W. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol. Biochem., 1998, 30: 925-937 CrossRef
  13. Siciliano S., Fortin N., Himoc N., Siciliano  S.D., Fortin N., Mihoc A., Wisse G., Labelle S., Beaumier D., Ouellette D., Roy R., Whyte L.G., Banks M.K., Schwab P., Lee K., Greer C.W. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol., 2001, 67: 2469-2475 CrossRef
  14. Barac T., Taghavi S., Borremans B., Provoost A., Oeyen L., Colpaert J.V., Vangronsveld J., van der Lelie D. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol., 2004, 22: 583-588 CrossRef
  15. Germaine K.J., Keogh E., Garcia-Cabellos G., Borremans B., Lelie D., Barac T., Oeyen L., Vangronsveld J., Moore F.P., Moore E.P., Campbell C.D., Ryan D., Dowling D.N. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol., 2004, 48: 109-118 CrossRef
  16. Germaine K., Liu X., Cabellos G., Hogan J., Ryan D., Dowling D.N. Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichloro-phenoxyacetic acid. FEMS Microbiol. Ecol., 2006, 57: 302-310.
  17. Porteous-Moore F., Barac T., Borremans B., Oeyen L., Vangronsveld J., van der Lelie D., Campbell D., Moore E.R.B. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Sys. Appl. Microbiol., 2006, 29: 539-556.
  18. Ryan R.P., Ryan D.J., Sun Y.C., Li F-M., Wang Y., Dowling D.N. An acquired efflux system is responsible for copper resistance in Xanthomonas strain IG-8 isolated from China. FEMS Microbiol. Lett., 2007, 268: 40-46 CrossRef
  19. Posada F., Vega F.E. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota:Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia, 2005, 97: 1195-1200 CrossRef
  20. Miche L., Balandreau J. Effects of rice seed surfacesterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Appl. Environ. Microbiol., 2001, 67: 3046-3052 CrossRef
  21. Lodewyckx C., Vangronsveld J., Porteous F., Moore E.R.B., Taghavi S., Mezgeay M., van der Lelie D. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci., 2002, 21: 583-606 CrossRef
  22. Rosenblueth M., Martinez-Romero E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact., 2006, 19: 827-837 CrossRef
  23. Berg G., Hallmann J. Control of plant pathogenic fungi  with bacterial endophytes. In: Microbial root endophytes /B.J.E. Schulz, C.J.C. Boyle, T.N. Sieber (eds.). Springer-Verlag, Berlin, 2006.
  24. Franks A., Ryan P.R., Abbas A., Mark G.L., O’Gara F. Molecular tools for studying plant growth-promoting rhizobacteria (PGPR): Molecular techniques for soil and rhizosphere microorganisms. CABI Publishing, Wallingford, Oxfordshire, UK, 2006.
  25. Reiter B., Sessitsch A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can. J. Microbiol., 2006, 52: 140-149 CrossRef
  26. Ulrich K., Stauber T., Ewald D. Paenibacillus — a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tiss. Organ. Cult., 2008, 93: 347-351 CrossRef
  27. Sun L., Qiu F., Zhang X., Dai X., Dong X., Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb. Ecol., 2008, 55: 415-424 CrossRef
  28. Rai R., Prasanta K., Dash P.K., Prasanna B.M., Singh A. Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype: isolation, identification and enumeration. World J. Microbiol. Biotechnol., 2007, 23: 853-858 CrossRef
  29. Zinniel D.K., Lambrecht P., Harris N.B., Feng Z, Kuczmarski D., Higley P., Ishimaru C.A., Arunakumari A., Raul B.G., Vidaver A.K. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol., 2002, 68(5): 2198-2208 CrossRef
  30. Larrainzar E., O’Gara F., Morrissey J.P. Applications of autofluorescent proteins for in situ studies in microbial ecology. Ann. Rev. Microbiol., 2005, 59: 257-277 CrossRef
  31. Gage D.J., Bobo T., Long S.R. Use of green fluorescent protein to visualize early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J. Bacteriol., 1996, 178: 7159-7166.
  32. Tombolini R., Unge A., Davey M.E., de Bruijn F.J., Jansson J.K. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol., 1997, 22: 17-28 CrossRef
  33. Tombolini R., Jansson J.K. Monitoring of GFP-tagged bacterial cells. In: Methods in molecular biology: bioluminescence methods and protocols /R.A. LaRossa (ed.). Totowa, NJ, 1998: 285-298.
  34. Villacieros M., Power B., Sanchez-Contreras M., Lloret J., Orueza-
    bal R.I., Martin M., Fernandez-Pinas F., Bonilla I., Whelan C., Dow-
    ling D.N., Rivilla R. Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil, 2003, 251: 47-54 CrossRef
  35. James E.K., Gyaneshwar P., Mathan N., Barraquio W.L., Reddy P.M., Iannetta P.P., Olivares F.L., Ladha J.K. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant MicrobeInteract., 2002, 15: 894-906 CrossRef
  36. Miche L., Battistoni F., Gemmer S., Belghazi M., Reinhold-Hurek B. Up regulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativacultivars with the endophyte Azoarcus sp. Mol. Plant. Microbe Interact., 2006, 1: 502-511 CrossRef
  37. Verma S.C., Ladha J.K., Tripathi A.K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol., 2001, 91: 127-141 CrossRef
  38. Wakelin S., Warren R., Harvey P., Ryder M. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Bio. Fert. Soils, 2004, 40: 36-43 CrossRef
  39. Lee S., Flores-Encarnacion M., Contreras-Zentella M., Garcia-Flo-
    res L., Escamilla J.E., Kennedy C. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J. Bacteriol., 2004, 186: 5384-5391 CrossRef
  40. Costa J.M., Loper J.E. Characterization of siderophore production by the biological-control agent Enterobacter cloacae. Mol. Plant Microbe Interact., 1994, 7: 440-448.
  41. Pirttila A., Joensuu P., Pospiech H., Jalonen J., Hohtola A. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol. Plant, 2004, 121: 305-312 CrossRef
  42. Compant S., Duffy B., Nowak J., Clement C., Barka E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol., 2005, 71: 4951-4959 CrossRef
  43. Compant S., Reiter B., Sessitsch A., Nowak J., Clement C., Barka E.A. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl. Environ. Microbiol., 2005, 71: 1685-1693 CrossRef
  44. Gray E.J., Smith D.L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol. Biochem., 2005, 37: 395-412 CrossRef
  45. Kerry B.R. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Ann. Rev. Phytopathol., 2000, 38: 423-441 CrossRef
  46. Sturz A.V., Christie B.R., Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci., 2000, 19: 1-30 CrossRef
  47. Ping L., Boland W. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci., 2004, 9: 263-266 CrossRef
  48. Kloepper J.W., Ryu C.-M. Bacterial endophytes as elicitors of induced systemic resistance. In: Microbial root endophytes /B.J.E. Schulz, C.J.C. Boyle, T.N. Sieber (eds.). Springer-Verlag, Berlin, 2006.