doi: 10.15389/agrobiology.2014.5.3eng

UDC 631.461.52:581.557.22:581.148.5:577.21

SYMBIOTIC NODULE SENESCENCE IN LEGUMES: MOLECULAR-GENETIC AND CELLULAR ASPECTS (review)

T.A. Serova, V.E. Tsyganov

All-Russian Research Institute of Agricultural Microbiology, Russian Academy of Agricultural Sciences, 3, sh. Podbelskogo, St. Petersburg, 196608 Russia,
e-mail tsyganov@arriam.spb.ru

Received July 31, 2013


Senescence is the natural stage in development of symbiotic nodule. As a result of senescence, reutilization of different nutrients from nodule to the other plant organs occurs. Generally senescence in legumes is triggered after flowering finishing, although the first traits of senescence can be observed very early during nodule development. A delay of the triggering of senescence program will allow to prolong the active nitrogen-fixation period and therefore to increase the amount of symbiotrophic nitrogen in plants and, finally, to elevate legume productivity. That is why no wonder that in the recent years the senescence of nitrogen-fixing nodules is actively studied. In this review the main developmental stages of nitrogen-fixing symbiotic nodule of legumes, particularities of symbiotic nodule development of determinate and indeterminate types are considered. In legumes with indeterminate nodules, the symbiosomes are not long leaving as the infected tissues are permanently renewing due to apical meristem. There are two subsequent stages identified in an indeterminate nodule senescent. First a bacteroid degradation and the death of some infected cells occur, and then both symbiosomes and all infected cells are destroyed. In determinate nodules, the senescence initiated in the central part of a nodule, then extends to the peripheral zone. In this review morphological characters of nodule senescence at ulatrstructural level are analysed. The role of cysteine and threonine proteases is discussed. Reutilization of nitrogen and other products of protein degradation are probably the most important during senescence. There are the evidences that in the root nodules of legumes the cysteine proteases are involved into nodular functions, adaptation of the host plant cells to physiological stresses, and the nodule senescence control. By a large-scale analysis of nodule transcriptome of Medicago truncatula Gaertn. several gene groups expressed at successive stages of the senescence of indeterminate nodule are revealed. In this review the role of phytohormones, such as ethylene, abscisic acid, jasmonic acid, gibberellins and nitrogen monooxide in senescence of symbiotic nodule is considered. Nevertheless, until recent days our knowledge about hormonal control of a nodule senescence is still incomplete. The oxidative stress, accompanying the process of nodule senescence is discussed. On the nodules aging, the concentrations of peroxides, protein carbonils, modified DNA nucleotides and catalytic Fe increase. Iron activates lipids peroxidation in a peribacteroid space, resulting in degradation of the peribacteroid membrane in senescent nodules. The concentrations of oxidized glutathione and homoglutathion rise significantly during the nodule development, and the reduced forms decrease under senescence, indicating an oxidative stress in the senescing nodules. In this review the role of genes, encoding proteins involved in transport of wide-range of molecules, and genes, whose products are involved in regulatory and signal functions in cell; differences between stress-induced senescence and natural senescence are considered. Using model legumes, Lotus japonicus (Regel) K. Larsen and M. truncatula, several genes were cloned the mutations of which caused early senescence. It is emphasized that these genes encode different proteins involved into functions of a symbiotic nodule. Until now, two transcription factors in M. truncatula are described, which are involved into nodule senescence. An induced senescence is more rapid, comparing to natural senescence, and manifests the signs of an oxidative stress and programmed cell death.

Keywords: legume-Rhizobium symbiosis, nodule development, genetic control, oxidative stress, proteases, ethylene, abcisic acid, jasmonic acid, gibbrellins, nitrogen monoxide, rhizobia.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. Brewin N.J. Development of the legume root nodules. Cell Dev. Biol., 1991, 7: 191-226. CrossRef
2. Gage D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev., 2004, 68: 208-300. CrossRef
3. Timmers A.C.J. The role of the plant cytoskeleton in the interaction between legumes and rhizobia. J. Microscopy, 2008, 231: 247-256. CrossRef
4. Tsyganova A.V., Kitaeva A.B., Brewin N.J., Tsyganov V.E. Cellular mechanisms of nodule development in legume plants. Agricultural Biology, 2011, 3: 34-40. (http://www.ag-robiology.ru/3-2011tsiganova-eng.html).
5. Tsyganova V.A., Tsyganov V.E. Uspekhi sovremennoi biologii, 2012, 132(2): 211-222.
6. Kijne J.W. The fine structure of pea root nodules. 2. Senescence and disintegration of the bacteroid tissue. Physiol. Plant Pathol., 1975, 7: 12-21. CrossRef
7. Pfeiffer N.E., Torres C.M., Wagner F.W. Proteolytic activity in soybean root nodules: activity in host cell cytosole and bacteroid throughout physiological development and senescence. Plant Physiol., 1983, 71: 197-802. CrossRef
8. Lahiri K., Chattopadhyay S., Chatterjee S., Ghosh B. Biochemical changes in nodules of Vigna mungo (L.) during vegetative and reproductive stage of plant growth in the field. Ann. Bot., 1993, 71:485-488. CrossRef
9. Morzhina E.V., Tsyganov V.E., Borisov A.Y., Lebsky V.K., Tikhonovich I.A. Four developmental stages identified by genetic dissection of pea (Pisum sativum L.) root nodule morphogenesis. Plant Sci., 2000, 155: 75-83. CrossRef
10. Pladys D., Vance C.P. Proteolysis during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol., 1993, 103: 379-384. CrossRef
11. Perotto S., Brewin N.J., Kannenberg E.L. Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841. Mol. Plant-Microbe Interact., 1994, 7: 99-112. CrossRef
12. Perez Guerra J.C., Coussens G., De Keysler A., De Rycke R., De Bodt S., Van de Velde W., Goormachtig S., Holsters M. Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol., 2010, 152: 1574-1584. CrossRef
13. Virtanen A.I., Miettinen J.K. Formation of biliverdin from legcholeglobin, the green pigment in leguminous root nodules. Acta Chem. Scand., 1949, 3: 17-21. CrossRef
14. Timmers A.C.J., Soupene E., Auriac M.-Ch., De Billy F., Vasse J., Biostard P., Truchet G. Saprophytic intracellular rhizobia in alfalfa nodules. Mol. Plant-Microbe Interact., 2000, 13(11): 1204-1213. CrossRef
15. Van de Velde W., Perez Guerra J.C., De Keysler A., De Rycke R., Rombauts S., Maunoury N., Mergaert P., Kondorosi E., Holsters M., Goormachtig S. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol., 2006, 141: 711-720. CrossRef
16. Fernández-Luquenõ F., Dendooven L., Munive A., Corlay-Chee L., Serrano-Covarrubias L.M., Espinosa-Victoria D. Micro-morphology of common bean (Phaseolus vulgaris L.) nodules undergoing senescence. Acta Physiol. Plant., 2008, 30: 545-552. CrossRef
17. Roberts I.N., Caputo C., Criado M.V., Funk Ch. Senescence-associated proteases in plants. Acta Physiol. Plant., 2012, 145: 130-139. CrossRef
18. Kardailsky I.V., Brewin N.J. Expression of cysteine protease genes in pea nodule development and senescence. Mol. Plant-Microbe Interact., 1996, 8: 689-695. CrossRef
19. Pladys D., Dimitrijevic L., Rigaud J. Localization of a protease in protoplast preparations in infected cells of French bean nodules. Plant Physiol., 1991, 97: 1174-1180. CrossRef
20. Feussner I., Wasternack C. The lipoxygenase pathway. Plant Biol., 2002, 53: 275-297. CrossRef
21. Puppo A., Groten K., Bastian F., Carzaniga R., Soussi M., Lucas M.M., De Felipe R., Harrison J., Vanacker H., Foyer Ch.H. Legume nodule senescence: roles for redox and hormone signaling in the orchestration of the natural aging process. New Phytol., 2005, 165: 683-701. CrossRef
22. Ferguson B.J., Mathesius U. Signaling interactions during nodule development. J. Plant Growth Reg., 2003, 22: 47-72. CrossRef
23. Charbonneau G.A., Newcomb W. Growth regulators in developing effective root-nodules of the garden pea (Pisum sativum L.). Biochemie und Physiologie der Pflanzen, 1985, 180: 667-681. CrossRef
24. Thomas S.G., Phillips A.L., Hedden P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. PNAS USA, 1999, 96: 4698-4703. CrossRef
25. Cam Y., Pierre O., Boncompagni E., Hérouart D., Meilhoc E., Bruand C. Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol., 2012, 196: 548-560. CrossRef
26. Puppo A., Rigaud J., Job D. Role of superoxide anion in leghemoglobin autoxidation. Plant Sci. Lett., 1981, 22: 353-360. CrossRef
27. Davies M.J., Puppo A. Direct detection of a globin-derived radical in leghaemoglobin treated with peroxides. Biochem. J., 1992, 281: 197-201.
28. Puppo A., Halliwell B. Generation of hydroxyl radicals by soybean nodule leghaemoglobin. Planta, 1988, 173: 405-410. CrossRef
Dalton D.A., Post C.J., Langeberg L. Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, ascorbate and associated enzymes in soybean root nodules. Plant Physiol., 1991, 96: 812-818. CrossRef
30. Pauly N., Pucciariello C., Mandon K., Innocenti G., Jamet A., Baudouin E., Hérouart D., Frendo P, Puppo A. Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. J. Exp. Bot., 2006, 57(8): 1769-1776. CrossRef
31. Becana M., Klucas R.V. Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. PNAS USA, 1992, 89: 8958-8962. CrossRef
32. Mathieu C., Moreau S., Frendo P., Puppo A., Davies M.J. Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radical Biol. Med., 1998, 24: 1242-1249. CrossRef
33. Alesandrini F., Mathis R., Van de Sype G., Hérouart D., Puppo A. Possible roles of a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol., 2003, 158: 131-138. CrossRef
34. Rubio M.C., James E.K., Clemente M.R., Bucciarelli B., Fedorova M., Vance C.P., Becana M. Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol. Plant-Microbe Interact., 2004, 17: 1294-1305. CrossRef
35. Evans P.J., Gallesi D., Mathieu Ch., Hernandez M.J., De Felipe M., Halliwell B., Puppo A. Oxidative stress occurs during soybean nodule senescence. Planta, 1999, 208: 73-79. CrossRef
36. Borisov A.Yu., Vasil'chikov A.G., Voroshilova V.A., Danilova T.N., Zhernakov A.I., Zhukov V.A., Koroleva T.A., Kuznetsova E.V., Madsen L., Mofett M., Naumkina T.S., Nemankin T.A., Pavlova Z.B., Petrova N.E., Pinaev A.G., Radutoiu S., Rozov S.M., Solovov I.I., Stougaard I., Topunov A.F., Uiden N.F., Tsyganov V.E., Shtark O.Yu., Tikhonovich I.A. Prikladnaya biokhimiya i mikrobiologiya, 2007, 43(3): 265-271.
37. Krusell L., Krause K., Ott T., Desbrosses G., Krämer U., Sato S. The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell, 2005, 17: 1625-1636. CrossRef
38. Kumagai H., Hakoyama T., Umehara Y., Sato S., Kaneko T., Tabata S., Kouchi H. A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiol., 2007, 143: 1293-1305. CrossRef
39. Hakoyama T., Niimi K., YamamotoT.,Isobe S., Sato S., Nakamura Y., Tabata S., Kumagai H., Umehara Y., Brossuleit K. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol., 2012, 53: 225-236. CrossRef
40. Suganuma N., Nakamura Y., Yamamoto M., Ohta T., Koiwa H., Akao S.,  Kawaguchi M. The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Mol. Genet. Genomics, 2003, 269: 312-320. CrossRef
41. Bourcy M., Brocard L., Pislariu C.I., Cosson V., Mergaert P., Tadege M., Mysore K.S., Udvardi M.K., Gourion B., Ratet P. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytol., 2013, 197: 1250-126. CrossRef
42. Xi J., Chen Y., Nakashima J., Wang S., Chen R. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation. Mol. Plant-Microbe Interact., 2013, 26(8): 893-902. CrossRef
43. Sheokand S., Dahiya P., Vincent J.L., Brewin N.J. Modified expression of cysteine protease affects seed germination, vegetative growth and nodule development in transgenic lines of Medicago truncatula. Plant Sci., 2005, 169: 966-975. CrossRef
44. D’haeseleer K., De Keyser A., Goormachtig S., Holsters M. Transcription factor MtATB2: about nodulation, sucrose and senescence. Plant Cell Physiol., 2010, 51(9): 1416-1424. CrossRef
45. De Zélicourt A., Diet A., Marion J., Laffont C., Ariel F., Moison M., Zahaf O., Crespi M., Gruber V., Frugier F. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J., 2012, 70: 220-230. CrossRef
46. Roth M.G. Phosphoinositides in constitutive membrane traffic. Physiol Rev., 2004, 84: 699-730. CrossRef
47. Pierre O., Engler G., Hopkins J., Brau F., Boncompagni E., Herouart D. Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules. Plant, Cell and Environ., 2013, 36(11): 2059-2070. CrossRef

back