doi: 10.15389/agrobiology.2014.5.78eng

UDC 633.16:581.1/5:575.174.015.3:57.042

ANALYSIS OF SPRING BARLEY INTRASPECIFIC POLYMORPHISM IN CONNECTION WITH TOLERANCE TO LEAD

A.V. Dikarev, V.G. Dikarev, N.S. Dikareva, S.A. Geras'kin

All-Russian Research Institute of Agricultural Radiology and Agroecology, Russian Academy of Agricultural Sciences, 109 km, Kievskoe sh., Obninsk, Kaluzhskaya Province, 249032 Russia, 109 км,
e-mail dikarev.vlad@yandex.ru, stgeraskin@gmail.com

Received September 10, 2012


Under technogenic pollution, phytotoxicity of heavy metals (HM) becomes a factor limiting yield and quality of crop production. In breeding, an intraspecific polymorphism of resistance to technogenic factors should be estimated with the analysis of its formation and maintenance. Using spring barley (Hordeum vulgare L.) Zazerskii 85, Gorinskii and Chelyabinskii 1 varieties, we studied the influence of different Pb(NO3)2 concentrations (1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0 mg/ml) on the growth of roots and offsprings in seedlings. Then, a testing concentration of Pb(NO3)2 found out was applied to investigate an intraspecific polymorphism of barley plant tolerance to the toxicant. The cultivars from the VIR World Collection (N.I. Vavilov Research Institute of Plant Industry, St. Petersburg) were tested using seeds reproduced in 2008, 2009 and 2010 (36, 100 and 24 varieties, respectively). The varieties were divided into classes according to Sturgis’s rule. The lead sensitive and lead tolerant forms were separated basing on a depression coefficient. According to root growth, the highest tolerance was observed in the Gorinskii variety, and the Zazerskii 85 variety was the most sensitive. The influence of lead resulted in a shift of distribution of 100 cultivars to less offspring length, but according to Kolmogorov-Smirnov criterion there were no significant differences between the empiric distributions (D = 0.17 < D0,05 = 0.26). The tolerance to lead in varieties from the first and the last classes differed 2.0-4.5 times (i.e. from total suppression to growth stimulation). According to the length of the offsprings from the seeds reproduced in 2008 and 2010, there were no reliable differences from control (D = 0.167 < D0,05 = 0.434 and D = 0.125 < D0,05 = 0.531, respectively). A statistically unreliable stimulation of the seed germination also occurred (D = 0.306 < D0,05 = 0.320 and D = 0.208 < D0,05 = 0.392, respectively), probably because of less number of the tested samples. Lead caused multiple changes of the root morphology. Basing on morphological parameters, the varieties with a contrast tolerance to lead was revealed. Possible mechanisms of polymorphic tolerance of barley cultivars and other plants to HM are discussed. These data can be used under creation of agricultural plants tolerant to heavy metals.

Keywords: lead, barley, intraspecific polymorphism, contrast cultivars.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. Aleksakhin R.M., Fesenko S.V., Geras'kin S.A. et al. Metodika otsenki ekologicheskikh posledstvii tekhnogennogo zagryazneniya agroekosistem [Estimation of ecological consequences of technogenic pollution in agroecosystems]. Moscow, 2004.
2. Chernykh N.A., Edmon S.A. Agrokhimiya, 2004, 10: 78-85.
3. Minkina T.M. Agrokhimiya, 2011, 6: 68-77.
4. Geras'kin S.A., Dikarev V.G., Dikareva N.S., Udalova A.A. Genetika, 1996, 32(2): 272-278.
5. Geras’kin S.A., Kim J.K., Dikarev V.G., Dikareva N.S., Oudalova A.A. Cytogenetic effects of combined radioactive (137Cs) and chemical (Cd, Pb and 2,4-D herbicide) contamination on spring barley intercalar meristem cells. Mutation research, 2005, 586: 147-159.
6. Wu F., Zhang G., Dominy P. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot., 2003, 50: 67-78. CrossRef
7. Pan J.-W., Zhu M.-Y., Chen H. Alluminium-induced cell death in root-tip cells of barley. Environmental and experimental botany, 2001, 46: 71-79.
8. Murzaeva S.V. Prikladnaya biokhimiya i mikrobiologiya, 2004, 40(1): 114-119.
9. Gural'chuk Zh.Z. Fiziologiya i biokhimiya kul'turnykh rastenii, 1994, 26(2): 107-117.
10. Fenik S.I., Trofimyak T.B., Blyum Ya.B. Uspekhi sovremennoi biologii, 1995, 115(3): 261-276.
11. Kopittke P.M., Asher C.J., Kopittke R.A., Menzies N.W. Toxic effects of Pb2+ on growth of cowpea (Vigna inguiculata). Environ. Pollut., 2007, 150: 280-287.
12. Seregin I.V., Ivanov V.B. Fiziologiya rastenii, 2001, 48(4): 606-630.
13. Vassilev A., Tsonev T., Yordanov I. Physiological response of barley plants to cadmium contamination in soil during ontogenesis. Environ. Pollut., 1998, 103: 287-293. CrossRef
14.Semena sel'skokhozyaistvennykh kul'tur. Metody opredeleniya kachestva /Pod redaktsiei T.I. Vasilenko  [Crop seeds: estimation of quality parameters. T.I. Vasilenko (ed.)]. Moscow, 1991.
15. Nefed'eva E.E. Fiziologo-biokhimicheskie protsessy i morfogenez u rastenii posle deistviya impul'snogo davleniya na semena. Doktorskaya dissertatsiya [Physiological, biochemical processes, and morphogenesis in plants from seeds undergone the pulse pressure. DSc Thesis]. Moscow, 2011.
16. Kolmogorov A.N. Confidence limits for an unknown distribution function. AMS, 1941, 12: 461-463.
17. Smirnov N.V. Uspekhi matematicheskikh nauk, 1944, 10: 179-206.
18. Bessmertnyi B.S. Matematicheskaya statistika v klinicheskoi, profilakticheskoi i eksperimental'noi meditsine [Mathematical statistics in clinical, prophylactic and experimental medicine]. Moscow, 1967.
19. Soudek P., Katrusakova A., Sedlacek L., Tomaszewska B., Berden-Zrimmec M. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Arch. Environ. Contam. Toxicol., 2010, 59: 194-203.
20. Talanova V.V., Titov A.F., Boeva N.P. Fiziologiya i biokhimiya kul'turnykh rastenii, 2001, 33(1): 33-37.
21. Korneev N.A., Sarapul'tsev B.I., Morgunova E.A. et al. Radiobiologiya, 1985, 25(6): 768-773.
22. Baker A.J.M. Metal tolerance. New Phytol., 1987, 106: 93-111.
23. Alekseeva-Popova N.V. Toksicheskoe deistvie svintsa na vysshie rasteniya [Toxic effect of lead to higher plants]. Leningrad, 1991.
24. Morel J.L., Mench M., Guckert A. Measurement of Pb, Cu and Cd binding with mucilage exudates from maize (Zea mays L.) roots. Biol. Fertil. Soils, 1986, 2: 29-34.
25. Seregin I.V., Ivanov V.B. Fiziologiya rastenii, 1997, 44: 922-925.
26. Polesskaya O.G. Rastitel'naya kletka i aktivnye formy kisloroda [Plant cell and the active forms of oxygen]. Moscow, 2007.
27. Vodnik D., Jentschke G., Fritz E., Denayer F.-O., Degen G.H. Root-applied cytokinin reduces lead uptake and affects its distribution in Norway spruce seedlings. Physiol. Plant, 1999, 106: 75-81. CrossRef
28. Coughtrey P.J., Martin M.H. Cadmium uptake and distribution in tolerant and nontolerant population of Holcus lanatus grown in solution culture. Oicos, 1978, 30: 555-560.
29. Rudakova E.V., Karakis K.D., Sidorshina E.I. Fiziologiya i biokhimiya kul'turnykh rastenii, 1988, 20: 3-12.
30. Ouarity O., Boussama N. Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry, 1997, 45: 1343-1350 (doi: 10.1016/S0031-9422(97)00159-3.
31. Qureshi J.A., Hardwick K., Collin H.A. Intracellular localization of lead in a lead tolerant and sensitive clone of Anthoxantum odoratum. J. Plant. Physiol., 1986, 122: 357-364. CrossRef
32. Resse R.N., Roberts L.M. Effects of cadmium on whole cell and mitochondrial respiration in tobacco cells suspension cultures. J. Plant. Physiol., 1985, 120: 123-130.
33. Maldiney E., Thouvenin S. De l’influence des rayons X sur la germination. Revue gen. de Botanique, 1898, 10: 81-86.
34. Evller E. Uber die heilende Wirkung der Rontgenstrahlen bei abgegrentzen Eiterungen. Veroffentl. Geb. Des Militar. Sanitatswesens. Berlin. Jahrb. D. Wissensch. Botanik, 1906, 56: 416.
35. Van Assche F., Glijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ., 1990, 13: 195-206.
36. Schreiber L., Hartmann K. Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot., 1999, 50: 1267-1280. CrossRef
37. Breckle S.W. Growth under stress: heavy metals. NY, 1991.
38. Salt D.E., Rauser W.E. Mg-ATP-Dependent transport of phytochelatins across the tonoplast of oat roots. Plant. Physiol., 1995, 107: 1291-1301.
39. Antosiewitz D.M. Adaptation of plants to the environmental pollution with heavy metals. Acta Soc. Bot. Pollon., 1992, 61: 281-299.
40. Cutler J.M., Rains D.M. Characterization of cadmium uptake by plant tissue. Plant Physiol., 1974, 54: 67-71.
41. Kumar P.B.A.N. Phytoextraction: the use of plants to remove heavy metals from soil. Environ. Sci. Technol., 1995, 29: 1232-1238. CrossRef
42. McGrath S.P. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens growth in contaminated soils. Plant and Soil, 1997, 188: 153-159.
43. Wierzbicka M. Lead translocation and localization in Allium cepa roots. Can. J. Bot., 1987, 65: 1851-1860.
44. Zhuikova T.V., Pozolotina V.N., Bezel' V.S. Ekologiya, 1999, 3: 189-196.
45. Titov A.F., Laidinen G.F., Kaznina N.M. Fiziologiya i biokhimiya kul'turnykh rastenii, 2001, 33(5): 387-384.
46. Sarapul'tsev B.I., Geras'kin S.A. Geneticheskie osnovy radiorezistentnosti i evolyutsii [Genetic bases of radiotolerance and evolution]. Moscow, 1993.
47. Dineva S.B., Abramov V.I., Shevchenko V.A. Radiatsionnaya biologiya. Radioekologiya, 1994, 34(2): 177-181.
48. Lysenko E.A., Kal'chenko V.A., Shevchenko V.A. Radiatsionnaya biologiya. Radioekologiya, 1999, 39(6): 623-629.
49. Kal'chenko V.A., Shevchenko V.A., Fedotov I.S. Genetika, 1981, 17(1): 137-141.
50. Broadley M.R., Willey N.J., Wilkins J.C., Newton A.C., Ellis R.P., This D. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol., 2001, 152: 1-19. CrossRef

back