doi: 10.15389/agrobiology.2013.5.30eng

UDC 633.16:631.52:[577.114+631.559.2]

β-GLUCANS CONTENT AS A PERSPECTIVE TRAIT IN THE BARLEY BREEDING FOR FOODSTUFF USE (review)

V.I. Polonskii, A.V. Sumina

Krasnoyarsk State Agrarian University,
90, prosp. Mira, Krasnoyarsk, 660049 Russia,
e-mail: vadim.polonskiy@mail.ru

Received April 14, 2010

On the ground of data of foreign literature the authors consider the target utilization of barley in connection with β-glucans in grain. The authors analyzed the influence of a genotype, climatic conditions and agronomic methods of plant growing on β-glucans content in barley corn. The information was presented about physiologo-biochemical parameters β-glucans, which may be helpful for a development of indirect estimation of breeding material. Thus, it was fixed the negative correlation between β-glucans content in barley grain on the one hand and value of 1000seeds mass, amylose and starch content, ash percent, corn yield — on the other hand. The strong positive correlation was found between the content in corn of β-glucans, lipids, protein and the grain-unit and its hardness. The existence of such correlations makes possible the development of indirect estimation during barley breeding on heightened/reduced b-glucans content in grain. It was shown, that glumaceous amylose-free varieties are more advanced agronomically (in arid climate, especially), as they are able to realize a substantial potential of yield with high content of β-glucans. The authors made a conclusion about an importance of genetic variability in content of β-glucans in barley grain for successful breeding on this determinant.

Keywords: β-glucans, barley, grain, starch, fibre, dietary nutrition, hardness, cell wall, endosperm, evaluation.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. Lazaridou A., Biliaderis C.G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. Journal of Cereal Science, 2007, 46: 101-118.
2. Behall K.M., Scholfield D.J., Hallfrisch J. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. American Journal of Clinical Nutrition, 2004, 80: 1185-1193.
3. Cavallero A., Empilli S., Brighenti F., Stanca A.M. High (1-3,1-4)-β-glucan barley fractions in bread making and their effects on human glycemic response. Journal of Cereal Science, 2002, 36: 59-66.
4. Fincher G.B. Cereal cell wall polysaccharides in food, feed and fibre. 30th Nordic Cereal Congress, Book of Abstracts. Copenhagen, 2009: 28.
5. Brown G.D., Gordon S. Immune recognition. A new receptor for beta-glucans. Nature, 2001, 413: 36-37.
6. Byung-Kee B., Ulrich S.E. Barley for food: Characteristics, improvement, and renewed interest. Journal of Cereal Science, 2008, 48: 233-242.
7. Bell S., Goldman V.M., Bistrian B.R., Arnold A.H., Ostroff G., Forse A. Effect of β-glucan from oats and yeast on serum lipids. Critical Reviews in Food Science and Nutrition, 1999, 39: 189-202.
8. Dikeman C.L., Fahey G.C. Viscosity as related to dietary fibre. Critical Reviews in Food Science and Nutrition, 2006, 46: 649-663.
9. Battiliana P., Ornstein K., Minehira K., Schwarz J.M., Acheson K., Schneiter P., Burri J., Jequier E., Tappy L. Mechanisms of action of β-glucan in postprandial glucose metabolism in healthy men. European Journal of Clinical Nutrition, 2001, 55: 327-333.
10. Wood P.J. Relationships between solution properties of cereal β-glucans and physiological effects — a review. Trends in Food Science and Technology, 2002, 13: 313-320.
11. Bourdon I., Yokoyama W., Davis P., Hudson C., Backus R., Richter D., Knuckles B., Schneeman B.O. Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with β-glucan. American Journal of Clinical Nutrition, 1999, 69: 55-63.
12. Behall K.M., Scholfield D.J., Hallfrisch J. Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men. Nutrition Research, 2006, 26: 644-650.
13. McIntosh G.H., Whyte J., McArthur R., Nestel P.J. Barley and wheat foods: influence on plasma cholesterol concentrations in hypercholesterolemic men. American Journal of Clinical Nutrition, 1991, 53: 1205-1209.
14. Talati R., Baker W.L., Pabilonia M.S., White C.M., Coleman C.I. The effects of barley-derived soluble fibre on serum lipids. Annals of Family Medicine, 2009, 7: 157-163.
15. Smith K.N., Queenan K.M., Tomas W., Fulcher R.G., Slavin G.L. Physiological effects of concentrated barley β-glucan in mildly hypercholesterolemic adults. Journal of the American College of Nutrition, 2008, 27: 434-440.
16. Nilsen M.S., Jespersen B.M., Engelsen S.B. Cereal β-glucans — from raw material through processing and product development to health effects. 30th Nordic Cereal Congress, Book of Abstracts. Copenhagen, 2009: 29.
17. Holtekjolen A.K., Olsen H.H.R., Fargestad E.M., Uhlen A.K., Knut-
sen S.H. Variations in water absorption capacity and baking performance of barley varieties with different polysaccharide content and composition. Food Science and Technology, 2008, 41: 2085-2091.
18. Izydorczyk M.S., Chornick T.L., Paulley F.G., Edwards N.M., Dexter J.E. Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread. Food Chemistry, 2008, 108: 561-570.
19. Delaney B., Nicolosi R.J., Wilson T.A., Carlson T., Frazer S., Zheng G.-H., Hess R., Ostergren K., Haworth J., Knutson N. β-Glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian Golden Hamsters. The Journal of Nutrition, 2003, 133: 468-475.
20. Keogh G.F., Cooper G.J.S., Mulvey T.B., McArdle B.N., Coles G.D., Monro J.A., Poppitt S.D. Randomized controlled crossover study of the effect of a highly β-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. American Journal of Clinical Nutrition, 2003, 78: 711-718.
21. Wood P.J. Cereal β-glucans in diet and health. Journal of Cereal Science, 2007, 46: 230-238.
22. Bedford M.R., Classen H.L., Campbell G.L. The effect of pelleting, salt and pentosanase on the viscosity of intestinal contents and the performance of broilers feed rye. Poultry Sci., 1991, 70: 1571-1577.
23. Stewart D.C., Hawthorne D., Evans D.E. Development and assessment of a small-scale worth filtration test for the prediction of beer filtration efficiency. Journal of the Institute of Brewing, 2000, 106: 361-366.
24. Brennan C.S., Amor M.A., Harris N., Smith D., Cantrell I., Griggs D., Shewryll P.R. Cultivar differences in modification patterns of protein and carbohydrate reserves during malting of barley. Journal of Cereal Science, 1997, 26: 83-93.
25. Woodward J.R., Phillips D.R., Fincher G.B. Water-soluble (1→3), (1→4)-β-d-glucans from barley (Hordeum vulgare) endosperm. I. Physicochemical properties. Carbohydrate Polymers, 1983, 3: 143-156. 
26. Wood P.J., Weisz J., Blackwell B.A. Structural studies of (1-3)(1-4)-β-D-glucans by 13C-nucleaar magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chemistry, 1994, 71: 301-307. 
27. Izydorczyk M.S., Macri L.J., MacGregor A.W. Structure and physicochemical properties of barley non-starch polysaccharides — I. Water-extractable b-glucans and arabinoxilans. Carbohydrate Polymers, 1998, 35: 249-258.
28. Staudte R.G., Woodward J.R., Fincher G.B., Stone B.A. Water-soluble (1→3)(1→4)-β-d-glucans from barley (Hordeum vulgare) endosperm. III. Distribution of cello-triosyl and cellotetraosyl residues. Carbohydrate Polymers, 1983, 3: 299-312.
29. Wang Q., Wood P.J., Huang X., Huang X., Cui W. Preparation and characterization of molecular weight standards of low polydispersity from oat and barley (1→3)(1→4)-β-D-glucan. Food Hydrocolloids, 2003, 17: 845-853.  
30. Irakli M., Biliaderis C.G., Izydorczyk M.S., Papadoyannis I.N. Isolation, structural features and rheological properties of water-extractable β-glucans from different Greece barley cultivars. Journal of the Science of Food and Agriculture, 2004, 84: 1170-1178. 
31. Lazaridou A., Biliaderis C.G., Micha-Screttas M., Steele B.R. A comparative study on structure-function relations of mixed linkage (1→3), (1→4) linear β-D-glucans. Food Hydrocolloids, 2004, 18: 837-855. 
32. Vaikousi H., Biliaderis C.G., Izydorczyk M.S. Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. Journal of Cereal Science, 2004, 39: 119-137.
33. Papageorgiou M., Lakhdara N., Lazaridou A., Biliaderis C.G., Izydorczyk M.S. Water extractable (1→3,1→4)-β-d-glucans from barley and oats: an intervarietal study on their structural features and rheological behavior. Journal of Cereal Science, 2005, 42: 213-224.
34. Johansson L., Karesoja M., Ekholm P., Virkki L., Tenhu H. Comparison of the solution properties of (1→3),(1→4)-β-d-glucans extracted from oats and barley. Food Science and Technology, 2008, 41: 180-184.
35. Izydorczyk M.S., Jacobs M., Dexter J.E. Distribution and structural variation of nonstarch polysaccharides in milling fractions of hull-less barley with variable amylase content. Cereal Chemistry, 2003, 80: 645-653.
36. Jiang G., Vasanthan T. MALDI-MS and HPLC quantification of oligosaccharides of lichenase-hydrolyzed water-soluble β-glucan from ten barley varieties. Journal of Agriculture and Food Chemistry, 2000, 48: 3305-3310. 
37. Storsley J.M., Izydorczyk M.S., You S., Biliaderis C.G., Rossnagel B. Structure and physicochemical properties of β-glucans and arabinoxilans isolated from hull-less barley. Food Hydrocolloids, 2003, 17: 831-844. 
38. Wood P.J., Weisz J., Beere M.U. et al. Structure of (1→3,1→4)-β-glucan in waxy and nonwaxy barley. Cereal Chemistry, 2003, 80: 329-332.
39. Woodward J.R., Phillips D.R., Fincher G.B. Water-soluble (1→3,1→4)-β-d-glu-cans from barley (Hordeum vulgare) endosperm. IV. Comparison of 40 °С and 65 °С soluble fractions. Carbohydrate Polymers, 1988, 8: 85-97.
40. Gomez C., Navarro A., Manzanares P., Horta A., Carbonell J.V. Physical and structural properties of barley (1-3), (1-4)-β-D-glucan. Part II. Viscosity, chain stiffness and macromolecular dimensions. Carbohydrate Polymers, 1997, 32: 17-22.
41. Izydorczyk M.S., Dexter J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products. Food Research International, 2008, 41: 850-868.
42. Johansson L., Tuomainen P., Ylinen M., Ekholm P., Virkki L. Structural analysis of water-soluble and insoluble β-glucans of whole-grain oats and barley. Carbohydrate Polymers, 2004, 58: 267-274.
43. Fincher G.B., Stone B.A. Cell walls and their components in cereal grain technology. In: Advances in cereal science and technology / Y. Pomeraz (ed.). American Association of Cereal Chemists, St. Paul, 1986: 207-295.
44. Aman P., Graham H., Tilley A. Content and solubility of mixed-linked (1-3;1-4)-β-D-glucan in barley and oats during kernel development and storage. Journal of Cereal Science, 1989, 10: 45-50.
45. Fincher G.B. Morphology and chemical composition of barley endosperm cell walls. Journal of the Institute of Brewing, 1975, 81: 116-122.
46. Wilson S.M., Burton R.A., Doblin M.S., Stone B.A., Newbigin E.J., Fincher G.J., Bacic A. Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm. Planta, 2006, 224: 655-667.
47. Bamforth C.W., Kanauchi M. A simple model for the cell wall of the starchy endosperm in barley. Journal of the Institute of Brewing, 2001, 107: 235-240.
48. Woodward J.R., Fincher G.B., Stone B.A. Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydrate Polymers, 1983, 3: 207-225.
49. Quinde Z., Ulrich S.E., Baik B.K. Genotypic variation in color and discoloration potential of barley-based food products. Cereal Chemistry, 2004, 81: 752-758. 
50. Quinde-Axtell Z., Powers P., Baik B.K. Retardation of discoloration in barley flour gel and dough. Cereal Chemistry, 2006, 83: 385-390.
51. Fastnaught C.E. Barley fibre. In: Handbook of dietary fibre /S. Cho, M. Dreher (eds.). Marcel Dekker, NY, 2001: 519-542.
52. Gajdosova A., Petrulakova Z., Havrlentova M., Cervena V., Hozova B., Sturdik E., Kogan G. The content of water-soluble and water-insoluble b-D-glucans in selected oats and barley varieties. Carbohydrate Polymers, 2007, 70: 46-52.
53. Lee C.J., Horsley R.D., Manthey F.A., Schwarz P.B. Comparison of β-glucan content of barley and oat. Cereal Chemistry, 1997, 74: 571-575.
54. Henry R.J. Pentosan and (1-3,1-4)-β-glucan concentrations in endosperm and wholegrain of wheat, barley, oats, and rye. Journal of Cereal Science, 1987, 6: 253-258.
55. Zhang G., Wang J., Chen J. Analysis of b-glucan content in barley cultivars from different locations of China. Food Chemistry, 2002, 79: 251-254.
56. Henry R.J. Genetic and environmental variation in the pentosan and b-glucan contents of barley, and their relation to malting quality. Journal of Cereal Science, 1986, 4: 269-277.
57. Aman P., Newman C.W. Chemical composition of some different types of barley grown in Montana, USA. Journal of Cereal Science, 1986, 4: 133-141.
58. Kalra S., Jood S. Effect of dietary barley β-glucan on cholesterol and lipoprotein fractions in rats. Journal of Cereal Science, 2000, 31: 141-145.
59. Xue Q., Wang L., Newman C.W., Graham H. Influence of the hulless, waxy starch and short-awn genes on the composition of barley. Journal of Cereal Science, 1997, 26: 251-257.
60. Munck L., Moller B., Jacobsen S., Sondergaard I. Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1→3, 1→4)-β-glucan in barley. Journal of Cereal Science, 2004, 40: 213-222.
61. Andersson A.A.M., Andersson R., Autio K., Aman P. Chemical composition and microstructure of two naked waxy barleys. Journal of Cereal Science, 1999, 30: 183-191.
62. Rudi H., Uhlen A.K., Harstad O.M., Munck L. Genetic variability in cereal carbohydrate compositions and potentials for improving nutritional value. Animal Feed Science and Technology, 2006, 130: 55-65.
63. Wang L., Jeronimidis G. Investigation of the fracture mode for hard and soft wheat endosperm using the loading-unloading bending test. Journal of Cereal Science, 2008, 48: 193-202.
64. Darlington H.F., Tecsi L., Harris N., Griggs D.L., Cantrell I.C., Shew-
ry P.R. Starch granule associated proteins in barley and wheat. Journal of Cereal Science, 2000, 31: 21-29.
65. Allison M.J., Cowe I., McHale R. A rapid test for the prediction of malting quality of barley. Journal of the Institute of Brewing, 1976, 82: 166-167.
66. Lazaridou A., Chornick T., Biliaderis C.G., Izydorczyk M.S. Composition and molecular structure of polysaccharides released from barley endosperm cell walls by sequential extraction with water, malt enzymes, and alkali. Journal of Cereal Science, 2008, 48: 304-318.
67. Nielsen J.P. Evaluation of malting barley quality using exploratory data analysis. II. The use of kernel hardness and image analysis as screening methods. Journal of Cereal Science, 2003, 38: 247-255.
68. Fox G.P., Osborne B., Bowman J., Kelly A., Cakir M., Poulsen D., Inkerman A., Henry R. Measurement of genetic and environmental variation in barley (Hordeum vulgare) grain hardness. Journal of Cereal Science, 2007, 46: 82-92.
69. Brennan C.S., Haris N., Smith D., Shewry P.R. Structural differences in the mature endosperms of good and poor malting barley cultivars. Journal of Cereal Science, 1996, 24: 171-177.
70. Swanston J.S. Effects on barley grain size, texture and modification during malting associated with three genes on chromosome 1. Journal of Cereal Science, 1995, 22: 157-161.
71. Henry R.J. A comparative study of the total β-glucan content of some Australian barleys. Australian Journal of Experimental Agriculture, 1985, 25: 424-427.
72. Gamlath J., Aldred G.P., Panozzo J.F. Barley (1-3; 1-4)-β-glucan and arabinoxilan content are related to kernel hardness and water uptake. Journal of Cereal Science, 2008, 47: 365-371.
73. Davidson D., Eastman M.A., Thomas J.E. Water during germination of barley. Plant Science Letters, 1976, 6: 223-230.
74. Bello M., Tolaba M.P., Aguerre R.J., Suarez C. Modeling water uptake in a cereal grain during soaking. Journal of Food Engineering, 2010, 97: 95-100.
75. Baik B.B., Ulrich S.E. Barley for food: Characteristics, improvement, and renewed interest. Journal of Cereal Science, 2008, 48: 233-242.
76. Perez-Vendrell A.M., Brufau J., Molina-Cano J.L., Francesh M., Gu-
asch J. Effects of cultivar and environment on β-(1,3)-(1,4)-D-glucan content and acid extract viscosity of Spanish barleys. Journal of Cereal Science, 1996, 23: 285-292.
77. Fastnaught C.E., Berglund P.T., Holm E.T., Fox G.J. Genetic and environmental variation in β-glucan content and quality parameters of barley for food. Crop Sci., 1996, 36: 941-946.
78. Yalcin E., Celik S., Akar T., Sayim I., Koksel H. Effects of genotype and environment on β-glucan and dietary fibre contents of hull-less barleys grown in Turkey. Food Chemistry, 2007, 101: 171-176.
79. Griffey C., Brooks W., Kurantz M., Thomason W., Taylor F., Obert D., Moreau R., Flores R., Sohn M., Hicks K. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production. Journal of Cereal Science, 2010, 51: 41-49.
80. Stuart I.M., Loi L., Fincher G.B. Varietal and environmental variations in (1→3, 1→4)-β-D-glucanase potential in barley: Relationship to malting quality. Journal of Cereal Science, 1988, 7: 61-71.
81. Miller S.S., Vincent D.J., Weisz J., Fulcher R.G. Oat β-glucans: An evaluation of eastern Canadian cultivars and unregistered lines. Canadian Journal of Plant Science, 1993, 73: 429-436.
82. Hang A., Obert D., Gironella A.I.N., Burton C.S. Barley amylase and β-glucan: their relationships to protein, agronomic traits, and environmental factors. Crop Sci., 2007, 47: 1754-1760.
83. Rey J.I., Hayes P.M., Petrie S.E., Corey A., Flowers M., Ohm J.B., Ong C., Rhinhart K., Ross A.S. Production of dryland barley for human food: quality and agronomic performance. Crop Sci., 2009, 49: 347-355.
84. Tiwari U., Cummins E. Simulation of the factors affecting β-glucan levels during the cultivation of oats. Journal of Cereal Science, 2009, 50: 175-183.
85. Zhang G., Chen J., Wang J., Ding S. Cultivar and environmental effects on (1-3, 1-4)-β-D-glucan and protein content in malting barley. Journal of Cereal Science, 2001, 34: 295-301.
86. Molina-Cano J.L., Sopena A., Polo J.P., Bergareche C., Moralejo M.A., Swanston J.S., Glidewell S.M. Relationships between barley hordeins and malting quality in a mutant of cv. Triumph. II. Genetic and environmental effects on water uptake. Journal of Cereal Science, 2002, 36: 39-50.
87. Peterson D.M., Wesenberg D.M., Burrup D.E. β-Glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Sci., 1995, 35: 965-970.
88. Chernyshova A.A., White P.J., Scott M.P., Jannink J.-L. Selection for nutrition function and agronomic performance in oat. Crop Sci., 2007, 47: 2330-2339.
89. Anker-Nilssen K., Sahlstrom S., Knutsen S.H., Holtekjolen A.K. Influence of growth temperature on content, viscosity and relative molecular weight of water-soluble b-glucans in barley. Journal of Cereal Science, 2008, 48: 670-677.
90. Saastamoinen M., Plaami S., Kumpulainen J. Genetic and environmental variation in β-glucan content of oats cultivated or tested in Finland. Journal of Cereal Science, 1992, 16: 279-290.
91. Guler M. Barley grain b-glucan content as affected by nitrogen and irrigation. Field Crops Research, 2003, 84: 335-340.
92. Redaelli R., Sgrulletta D., Scalfati G., Destefanis E., Cacciatori P. Naked oats for improving human nutrition: genetic and agronomic variability of grain bioactive components. Crop Sci., 2009, 49: 1431-1437.
93. McCleary B.V., Codd R. Measurement of (1→3),(1→4)-β-D-glucan in barley and oats: streamlined enzymic procedure. Journal of Science Food and Agriculture, 1991, 55: 303-312.
94. Munck L. The revolutionary aspect of exploratory chemometric technology. Narayana Press, Gylling, Denmark, 2005.
95. Henry R.J. Near-infrared reflectance analysis of carbohydrates and its application to the determination of (1-3),(1-4)-β-D-glucan in barley. Carbohydrate Polymers, 1985, 14: 13-19.
96. Li J., Bаga M., Rossnagel B.G., Legge W.G., Chibbar R.N. Identification of quantitative trait loci for β-glucan concentration in barley grain. Journal of Cereal Science, 2008, 48: 647-655.
97. Oscarsson M., Andersson R., Salomonsson A.C., Aman P. Chemical composition of barley samples focusing on dietary fibre components. Journal of Cereal Science, 1996, 24: 161-170.
98. Fox G.P., Kelly A., Poulsen D., Inkerman A., Henry R. Selecting for increased barley grain size. Journal of Cereal Science, 2006, 43: 196-208.
99. Knutsen S.H., Holtekjоlen A.K. Preparation and analysis of dietary fibre constituents in whole grain from hulled and hull-less barley. Food Chemistry, 2007, 102: 707-715.
100. Huth M., Dongowski G., Gebhart E., Flamme W. Functional properties of dietary fibre enriched exudates from barley. Journal of Cereal Science, 2002, 32: 115-117.
101. Boros D., Marquardt R.R., Slominsky B.A., Guenter W. Extract viscosity as an indirect assay for water-soluble pentosan content in rye. Cereal Chemistry, 1993, 7: 575-580.
102. Munck L., Jespersen B.M. Adapting cereal plants and human society to a changing climate and economy merged by the concept of self-organization. In: Barley: Production, improvement, and use /S.E. Ulrich (ed.). John Wiley and Sons, USA, 2009, Chapter 17: 323-365.

 

back