doi: 10.15389/agrobiology.2013.5.3eng

UDC 631.522/.524:[575+575.22/.23+575.16/.1621

THIRD VARIABILITY, THE INHERITANCE TYPES AND SEED REPRODUCTION IN PLANTS

S.I. Maletsky1, N.V. Roik2, V.A. Dragavtsev3

1Institute of Cytology and Genetics of Siberian Branch, Russian Academy of Sciences,
10, prosp. Lavrentieva, Novosibirsk, 630090 Russia,
e-mail: stas@bionet.nsc.ru;
2Isitute of Bioenergetic Crops and Sugar Beet, Ukrainian Academy of Agricultural Sciences,
25, Klinicheskaya ul., Kiev, 03321 Ukraine,
e-mail: sugarbeet@ukr.net;
3Agrophysical Research Institute, Russian Academy of Agricultural Sciences,
14, Grazhdanskiy prosp., St. Petersburg, 195220 Russia,
e-mail: dravial@mail.ru

Received April 25, 2013

The G. Mendel’s model for hereditary factors (genes) and appeared on its base the genecentric paradigm, which postulates that genes control not only inheritance of simple traits of plants and animals, but determine ontogenesis, morphogenesis and all cardinal tendencies of life evolution, are examined. In the article, it is indicated, that along with the discovery of discrete heredity for Pisum sativum L., G. Mendel by fact described, in addition to well-known genotypic and paratypic variability, a one more variability for plants of genera Hieracium L., which now is denominated as an epigenetic variability. Analysis of literature permits to evolve the idea, that the real distribution of genotypes is determined not only by the G. Mendel’s lows for inheritance, but by structure of genomes (a ploidy) and by a manner of plant seeds reproduction (uniparental or biparental). In particular, the facts about the manner of reproduction of seeds of different species and genera demonstrate, that very often the reproductive characters are difficultly dedicated as mendelian, and their inheritance usually has an epigenetic nature. Distinctions in the manner of reproduction of Pisum seeds (double impregnation) and in Hieracium species (apogamy) illustrate the polymorphism of reproductive strategies of two botanical genera and can not be determined, by no means, by activity of postulated specific «genes of parthenogenesis» or their absence. In our opinion, a partenogenetic development of plants embryos can be attributed to epigenetic variability, and it is determined by receiving the external or internal signals, which make the switch from one development program to another, by cells of embryo sacks or seed buds of flower. A lot of manners for seed reproduction in many plant species (Beta vulgaris L., Cannabis sativa L., Rosa canina L., and Fragaria L.) illustrate both likeness and distinction in their hereditary systems. In the article the main role of the Soviet (Russian and Ukrainian) biologists in settling the new (epigenetic) paradigm of development and inheritance is demonstrated.

Keywords: mendelism, genocentric paradigm, principle of Astaurov, epigenetic heredity, uniparental and biparental model of seed reproduction.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

1. Dokinz R. Egoistichnyi gen [Selfish gene]. Moscow, 1993.
2. Lipton B. Umnyekletki: biologiyaubezhdenii. Kak myshlenie vliyaet na geny, kletki i DNK [Smart Cells: Conviction Biology. Haw the Thinking Affects Genes, Cells and DNA]. Moscow, 2011.
3. Buss L.W. Evolution, development and units of selection. PNAS USA, 1983, 80: 1387-1391.
4. Hartwell L.H., Hopfield J.J., Leibler S., Murray A.W. From molecular to modular cell biology. Nature, 1999, 402: 47-52.
5. Hurd P.J. The era of epigenetics. Brief. Funct. Genomics, 2010, 9(5-6): 425-428.
6. Dragavtsev V.A. Biosfera, 2012, 4(2): 245-256.
7. Maletskii S.I., Melent'eva S.A., Tatur I.S., Yudanova S.S., Maletskaya E.I. Vesti NAN Belarusi (seriya agrarnykh nauk), 2013, 1: 65-72.
8. Bastow R., Mylue J.S., Lister C., Lippman Z., Martienssen R.A., Dean C. Vernalization requires epigenetic silencing of FLC by histon methylation. Nature, 2004, 427: 164-167.
9. Sung S., Amasino R.M. Vernalization and epigenetics: how plants remember winter. Curr. Opin. Plant Biol., 2004, 7: 4-10.
10. Spenser G. Nasledsrvennost'. Osnovaniya biologii [Heredity. The Base of Biology]. St. Petersburg, 1870: 173-187.
11. Rieger R., Michaelis A., Green M.M. Glossary of genetics. Classical and molecular. Berlin-Heidelberg-NY-London etc., Springer-Verlag, 1991.
12. Timiryazev K.A. Nasledstvennost' [Heredity]. Moscow, 1939: 164-195.
13. Fisher R.A. The correlation between relatives on the supposition of mendelian inheritance. Royal Society of Edinburgh, 1918, 52: 399-433.
14. Maletskii S.I. Informatsionnyi vestnik VOGiS, 2009, 13(4): 820-852.
15. Bateson W. Mendel’s principles of heredity. London, Cambridge, NY, 1909.
16. Vavilov N.I. Mendelizm i ego znachenie v biologii i agronomii. Gregor Mendel'. Opyty nad rastitel'nymi gibridami [Mendelianism and its Importance in Biology. Gregor Mendel. Experiments on Plant Hybrids]. Moscow, 1965: 98-106.
17. Kartel' N.A., Makeeva E.N., Mezenko A.M. Genetika [Genetics]. Minsk, 2011.
18. Nogler G.A. The lesser-known Mendel: his experiments on Hieracium. Genetics, 2006, 172: 1-6.
19. Astaurov B.L. Zhurnal eksperimental'noi biologii, 1927, 3(1-2): 1-61; 3(3-4): 199-201.
20. Bogdanova E.D. Morfologicheskaya izmenchivost' pshenicy, inducirovannaya nikotinovoi kislotoi [Wheat morphogenetic variability induced by nicotinic acid]. Alma-Ata, 1984.
21. Bogdanova E.D., Makhmudova K.Kh. Epigenetika myagkoi pshenicy [Epigenetics of Soft Wheat]. Almaty, 2012.
22. Maletskii S.I. In: Plant Epigenetics. Novosibirsk, 2005: 7-54.
23. Durrant A. The environmental induction of heritable change in Linum. Heredity, 1962, 17(1): 431-439.
24. Mendel' G. Opyty nad rastitel'nymi gibridami (1865) [Experiments on Plant Hybrids (1865)]. Moscow, 1965: 7-48.
25. Khrzhanovskii V.S. Rod yastrebinok — Hieracium. Kurs obshchei botaniki [General Botany]. Moscow, 1976: 327.
26. Ostenfeld C.H. Experiments on the origin of species in the genus Hieracium (apogamy and hybridism). New Phytologist, 1912, 11(9): 347-354.
27. Khromosomhye chisla tsvetkovykh rastenii [Chromosome Numbers of Flowering Plants]. Leningrad, 1969: 111-114.
28. Ostenfeld C.H. Further studies on the apogamy and hybridization of the Hieracia. Zeitschrift fur Inductive Abstammungs und Vererbungsehre, 1910, 3(1): 241-285.
29. Khokhlov S.S. Uspekhi sovremennoi genetiki [Achievements in Modern Ggenetics]. Moscow, 1967, 1: 43-105.
30. Khokhlov S.S., Zaitseva M.I., Kupriyanov P.G. Vyyavlenie apomiktichnykh rastenii vo flore tsvetkovykh rastenii SSSR [Detection of Apomictic Plants in the Flora of Flowering Plants in the USSR]. Saratov, 1978.
31. Petrov D.F., Sankin L.S., Sukhareva N.B., Lukina L.A. Problemy apomiksisa u rastenii i zhivotnykh [Problems of Apomixes in Plants and Animals]. Novosibirsk, 1973: 88-95.
32. Kholodkovskii N.A. Biologicheskie ocherki [Biological Essays]. Moscow-Petrograd, 1923.
33. Maletskii S.I., Levites E.V., Baturin S.O., Yudanova S.S. Reproduktivnaya biologiya rastenii. Geneticheskii slovar' [Plant Reproductive Biology]. Novosibirsk, 2004.
34. Smith J. Notice of plant produced seeds without any apparent action of pollen. Transaction of the Linn. Society (Meeting of June 18th 1839). London, 1841: 509-512.
35. Mendel' G. Opyty nad rastitel'nymi gibridami [Experiments on Plant Hybrids]. Moscow, 1965: 57-96.
36. Rosenberg O. Cytological studies on the apogamy in Hieracium. Sv. Bot. Tidskr., 1907, 7: 918-919.
37. Petrov D.F. Apomiksis v prirode i opyte [Apomixis in Nature and in Experiments]. Novosibirsk, 1988. 
38. Haldane J.R.S. Theoretical genetics of autopolyploids. J. Genet., 1930, 22: 359-372.
39. Lutkov A.N. Eksperimental'naya poliploidiya v selektsii rastenii [Experimental Polyploidy in Plant Breeding]. Novosibirsk, 1966: 7-34.
40. Levites E.V., Ovechkina O.N., Maletskii S.I. Genetika, 1999, 35(8): 1086-1092. 
41. Hanna W.W. Use of apomixes in cultivar development. Adv. Agronomy, 1995, 54: 333-350.
42. Kindiger B., Sokolov V. Progress in the development of apomictic maize. Trends in Agronomy, 1997, 7: 75-94.
43. Savidan Y. Apomixis and agamic complex: from theory to practice. Species complex, gene flow and plant genetic resources. Paris, 1992: 291-300.
44. Petrov D.F. Geneticheskie osnovy apomiksisa [Genetic Basis of Apomixis]. Novosibirsk, 1979.
45. Richards A.J. Agamospermy. Plant breeding system. London-Weinheim-NY-Melburne-Madras, 1997: 396-450.
46. Klimenko V.V. Biologiya v shkole, 2006, 4: 3-12; 7: 3-7.
47. Filipchenko Yu.A. Izmenchivost' i metody ee izucheniya. Osnovy biologicheskoi variatsionnoi statistiki [Variability and Method for its Study. A Basis of Variation Statistics]. Leningrad, 1926: 5-32.
48. Kekser G. Modelirovanie v biologii [Modeling in Biology]. Moscow, 1963: 42-64.
49. Batygina T.B. Teoreticheskie osnovy reproduktsii rastenii. Ot mikrospory k sortu [Theoretical Basis of Plant Reproduction. From Microspores to Plant Variety]. Moscow, 2010: 12-74.
50. Dragavtsev V.A., Lutin P.P., Shkel' N.M., Nechiporenko N.N. DAN SSSR, 1984, 274(3): 720-723.
51. Yablonka E., Lemb M. Vistnik Ukr. tov. genetikiv i selektsioneriv, 2008, 6(2): 337-355.
52. Savel'ev S.V. Izmenchivost' i genial'nost' [Variability and Genius]. Moscow, 2012.  
53. Golubovskii M.D. Vek genetiki: evolyutsiya idei i ponyatii. Nauchno-istoricheskii ocherk [A Century of Genetics: Evolution of Ideas and Concepts]. St. Petersburg, 2000.
54. Astaurov B.L. Issledovanie nasledstvennikh narushenii bilateral'noi simmetrii v svyazi s izmenchivost'yu odinakovykh struktur v predelakh organizma. Nasledsvennost' i razvitie [Study of Inherited Disorders in Bilateral Symmetry as Related to Variability of Identical Structures in Organism. Heredity and Development]. Moscow, 1974: 54-109.
55. Babkov V.V. Moskovskaya shkola evolyutsionnoi genetiki [The Moscow School of Thought on Evolutionary Genetics]. Moscow, 1985: 59-72.
56. Strunnikov V.A., Vyshinskii I.M. Problemy genetiki i teoriya evolyutsii [Problems of Genetics and Evolution]. Novosibirsk, 1991: 99-114.
57. Vasil'ev A.G., Vasil'eva I.A., Bol'shakov V.N. Fenologicheskaya izmenchivost' i metody ee izucheniya [Phenogenetic Variability and Methods for its Study]. Ekaterinburg, 2007: 8-18.
58. Golubev A.G. Genes at work in random bouts. Prospects & Overviews. Bioessays, 2012, 34: 311-319.
59. Urmantsev Yu.A. Simmetriya prirody i priroda simmetrii [Symmetry of Nature and the Nature of Symmetry]. Moscow, 1974.
60. Riger R., Mikhaelis A. Geneticheskii i tsitologicheskii slovar' [Genetic and Cytological Dictionary]. Moscow, 1967.
61. Iogannsen V. Elementy tochnogo ucheniya ob izmenchivosti i nasledstvennosti s osnovami biologicheskoi variatsionnoi statistiki [Elements of the Precise Doctrine for Variability and Heredity with the Basics of Variation Statistics]. Leningrad, 1933.
62. Timofeev-Resovskii N.V. Zhurn. eksp. biol. (ser. A), 1925, 1(3-4): 93-142.
63. Arinshtein A.I. Nasledstvennost' i izmenchivost' rastenii, zhivotnikh i mikroorganizmov. Tom 2 [Heredity and Variability in Plants, Animals and Microorganisms. Vol. 2]. Moscow, 1959: 104-110.
64. Strunnikov V.A. Priroda, 1989, 2: 17-27.
65. Turing A.M. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, 1952, 237(641): 37-72.
66. Mandel'brot B. Frektal'naya geometriya prirody [Fractal Geometry in Nature]. Moscow-Izhevsk, 2002.  
67. Maletskii S.I., Denisova E.V., Lutkov A.N. Genetika, 1970, 6: 180-184.
68. Holliday R., Pugh J.D. DNA modification mechanisms and gene activity during development. Science, 1975, 187: 226-232.
69. Urbanska K.M. Pollen, mating and paternity in agamospermous angiosperms. Plant Species Biology, 1994, 9: 57-67.
70. Roik N.V., Koval'chuk N.S., Yatseva O.A., Maletskii S.I. Sakharnaya svekla, 2012, 9: 85-93.  
71. Maletskii S.I., Maletskaya E.I., Yudanova S.S. Vavilovskii zhurnal genetiki i selektsii, 2011, 15(1): 66-80.
72. Achard F.C. Ausfürliche Beschreibung der Methode nach welcher bei der Kultur der Runkelrübe verfahren werden muβ, um ihren Zuckerstoff nach Möglichkeit zu vermehren: Reprint. Berlin, Academie-Verlag, 1984, Bd. 63.
73. Zaikovskaya N.E. Biologiya i selektsiya sakharnoi svekly. Moscow, 1968: 137-207.
74. Kharchenko-Savitskaya E.I. Tsitologiya i embriologiya sakharnoi svekly. Tom 1. Sveklovodstvo [Cytology and Embryology of Sugar Beet. V. 1. Beet]. Kiev, 1940: 453-550.
75. Kharchenko-Savitskaya E.I. Doklady AN SSSR, 1938, 18: 469-474.
76. Oldemeyer R.K., Smith P.B. Importance of sugar beet hybrid development. J. Int. Inst. Res. Beet, 1965, 1: 16-27.
77. Favorskii N.V. Trudy nauchnogo instituta selektsii, vypusk II (Kiev), 1928: 3-11.
78. Shiryaeva E.I., Yarmolyuk G.I., Kulik A.G. In: Tsitogeneticheskie i tsitoembriologicheskie issledovaniya v selektsii sakharnoi svekly. Kiev, 1988: 28-38.
79. Shiryaeva E.I., Yarmolyuk G.I., Kulik A.G., Chervyakova V.A. Tsitologiya i genetika, 1989, 24(3): 39-44.
80. Seilova L.B. Apomoksis u sakharnoi svekly i ego ispol'zovanie v prakticheskoi selektsii [Apomixis sugar beet and its use in practical breeding]. Almaty, 1996.
81. Seilova L.B. In: Entsiklopediya roda: biologiya, genetika i selektsiya svekly. Novosibirsk, 2010: 158-163.
82. Bogomolov M.A. In: Entsiklopediya roda: biologiya, genetika i selektsiya svekly. Novosibirsk, 2010: 504-513.
83. Maletskii S.I., Maletskaya E.I. Genetika, 1996, 32(12): 1643-1650.  
84. Maletskii S.I. Binomial'nye raspredeleniya v geneticheskikh issledovaniyakh na rasteniyakh. Novosibirsk, 2000.  
85. Yudanova S.S., Maletskaya E.I. In: Dosyagnennya i problemi genetiki. selektsii ta biotekhnologii. Kiev, 2007, tom 2: 221-225.
86. Tsil'ke R.A., Poznyak S.I., Maletskaya E.I., Yudanova S.S., Maletskii S.I. Vestnik NGAU (Novosibirsk), 2010, 5(3): 19-25.
87. Levites E.V., Maletskii S.I. Genetika, 1999, 35(7): 939-948.
88. Levites E.V., Shakhova I.S., Kirikovich S.S. Povtornyi tsikl yarovizatsii i tsveteniya kak faktor epigeneticheskoi izmenchivosti u sakharnoi svekly [Recycled Vernalization and Flowering as Factors of Epigenetic Variability in Sugar Beet]. Novosibirsk, 2001.  
89. Levites E.V., Shkutnik T., Ovechkina O.N., Maletskyi S.I. Doklady RAN, 1998, 362(3): 430-432
90. Roik N.V., Koval'chuk N.S., Yatseva O.A., Maletskii S.I. Vistnik agrarnoi nauki UAAN (Kiev), 2012, 10: 42-48.
91. Grishko N.N. Doklady VASKHNIL, 1935, 3(1): 5-14.
92. Grishko N.N., Delone L.N. Kurs genetiki [Genetics]. Moscow, 1938.  
93. Virivits V.G., Laiko I.M., Sitnik V.P. i dr. Faktori eksperimental'noi evilyutsii organizmiv [The Factors of Experimental Evolution of Organisms]. Kiev, 2006, tom 3: 18-22.
94. Fedorova N.Ya. Sotsialisticheskoe rastenievodstvo, 1935, 15: 101-110.  
95. Baturin S.O., Sukhareva N.B., Maletskii S.I. Genetika, 1995, 31(10): 1418-1424.  
96. Maletskii S.I., Sukhareva N.B., Baturin S.O. Genetika, 1994, 30(2): 237-243.
97. Fagerland F. Die bastarde der Canina rosen, ihre Syndese und Formbildungsverhaltnisse. Act. Hort. Berg., 1945, 14: 9-37.
98. Gustafsson A., Hakonsson A. Meiosis in some rose hybrids. Botanical Naturalist, 1942: 331-342.
99. Thomas P.T. Reproductive versatility in Rubus. II. The chromosome and development. J. Genet., 1940, 40: 119-128.
100. Roik N.V., Koval'chuk N.S., Yatseva O.A. Vistnik agrarnoi nauki UAAN (Kiev), 2010, 9: 19-22.
101. Kunakh V.A. Zherbakovskie chteniya III [Proc. 3d Zhebrakov’s Scientific meeting]. Minsk, 2011.  

back