doi: 10.15389/agrobiology.2020.4.643eng

UDC: 636.92+639.112.1]:636.01:574/577



E.S. Shchukina1, G.Yu. Kosovsky1, V.I. Glazko1, 2, I.S. Kashapova1,
T.T. Glazko1, 2

1Afanas’ev Research Institute of Fur-Bearing Animal Breeding and Rabbit Breeding, 6, ul. Trudovaya, pos. Rodniki, Ramenskii Region, Moscow Province, 140143 Russia, e-mail,,
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia,e-mail (✉ corresponding author), tglazko@rambler.rusia, e-mail

Shchukina E.S.
Kashapova I.S.
Kosovskii G.Yu.
Glazko T.T.
Glazko V.I.

Received January 14, 2020


The domestic rabbit (Oryctolagus cuniculus var. domestica L.) belongs to the few domesticated species in which the wild ancestral species exists simultaneously with the domesticated one (M. Carneiro, 2014) that allows us to study the mechanisms underlying the processes of domestication. It should be noted that the genetic basis of domestication syndrome is still insufficiently studied (M.A. Zeder, 2006-2017). It is assumed that domestication is a unique form of symbiosis between humans and domesticated species that form a common habitat niche (M.A. Zeder, 2012). Research of symbiotic partners of such a niche allows us to accumulate information about the mechanisms of adaptation to it, including humans. In this regard, it is difficult to overestimate the importance of studying the domestic rabbit, because it has remained one of the main models in biomedical research for many decades (K.M. El-Bayomi, 2013). The unique physiological features of the rabbit explain its widespread use in the study of many human diseases. At the same time, we have not found any works that systematize current information on the fundamental biology of this domesticated species in comparison with its wild ancestral form. The purpose of this review is to summarize data on the population genetic structure (M. Carneiro, 2014; A.D. Stock, 1976), distribution of genomic elements (M. Carneiro, 2011), composition of microbiomes (M.S. Gómez-Conde, 2009), morphometric characteristics and physiological features (S.N. Bogolyubskii, 1959) of the domestic rabbit and ancestral subspecies of the European rabbit, including those that determine the value of O. cuniculus var. domestica not only as an economically valuable species, but also as a model object in various fields of biomedicine. The presented comparative analysis allows us to identify a number of phenotypic characteristics (J.L. Hendrikse, 2007; I. Brusini, 2018; P.S. Ungar, 2010), as well as a group of molecular genetic markers of genomic DNA, differentiating the domestic rabbit from the ancestral species (M. Sparwel, 2019). Distribution of alleles of different mobile genetic elements, microsatellites, separate structural genes involved in the domestication process of domestic rabbit, can improve the efficiency of genetic resources management of not only this species but also other objects that are used in biomedical research, and for solving problems of selection work.

Keywords: domestication syndrome, wild rabbits, domestic rabbits, DNA markers, endogenous retroviruses, polylocus genotyping, microbiota.



  1. Glazko V.I. Gene and genomic levels of domestication signature (review). Agricultural Biology [Sel'skokhozyaistvennaya biologiya],2018, 53(4): 659-672 CrossRef
  2. Zeder M.A., Emshwiller E., Smith B.D., Bradley D.G. Documenting domestication: the intersection of genetics and archaeology. Trends in Genetics, 2006, 22(3): 139-155 CrossRef
  3. Zeder M.A. The domestication of animals. Journal of Anthropological Research, 2012, 68(2): 161-190 CrossRef
  4. Zeder M.A. Domestication as a model system for the extended evolutionary synthesis. Interface Focus, 2017, 7(5): 20160133 CrossRef
  5. Lewis S.L., Maslin M.A. Defining the Anthropocene. Nature, 2015, 519(7542): 171-180 CrossRef
  6. El-Bayomi Kh.M., Awad A., Saleh A.A. Genetic diversity and phylogenetic relationship among some rabbit breeds using random amplified polymorphic DNA markers. Life Science Journal, 2013, 10(1): 1449-1457.
  7. Rybakova A.V., Makarova M.N., Makarov V.G. Mezhdunarodnyi vestnik veterinarii, 2016, 4: 102-106 (in Russ.).
  8. Sergienko I.V. Ateroskleroz i dislipidemii, 2011, 1: 57-65 (in Russ.).
  9. Carneiro M., Afonso S., Geraldes A., Garreau H., Bolet G., Boucher S., Tircazes A., Queney G., Nachman M.W., Ferrand N. The genetic structure of domestic rabbits. Molecular Biology and Evolution, 2011, 28(6): 1801-1816 CrossRef
  10. Maksimenko O.G., Deikin A.V., Khodarovich Yu.M., Georgiev P.G. Acta Naturae, 2013, 1(16): 33-47 (in Russ.).
  11. Whitman B.D. Domestic rabbits & their histories: breeds of the world. Overland Park, KS: Leathers Publishing, 2004.
  12. Weisbroth S.H. Chapter 14 Neoplastic diseases. In: The biology of the laboratory rabbit. S.H. Weisbroth, R.E. Flatt, A.L. Kraus (eds.). Academic Press, New York, 1974: 332-376.
  13. Lindsey J., Fox R. Inherited disease and variations. In: The biology of the laboratory rabbit. P. Manning (ed.), D. Ringler, C. Newcomer (series eds.). Academic Press, San Diego (CA), 1994: 293-319.
  14. Lebas F., Coudert P., de Rochambeau H., Thébault R.G. The rabbit: husbandry, health and production. FAO Animal Production and Health Series № 21. FAO, Rome, 1997.
  15. Bosze Z., Hiripi L., Carnwath J.W., Niemann H. The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Research, 2003, 12(5): 541-553 CrossRef
  16. Fan J.L., Watanabe T. Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacology & Therapeutics, 2003, 99(3): 261-282 CrossRef
  17. Houdebine L.M., Jolivet G., Ripoli P.J. Transgenic rabbits to prepare pharmaceutical proteins. In: Rabbit biotechnology: rabbit genomics, transgenesis, cloning and models. L.M. Houdebine, J. Fan (eds.). Springer, Dordrecht, 2009: 65-75 CrossRef
  18. Rogel-Gaillard C., Ferrand N., Hayes H. Rabbit. In: Genome mapping and genomics in domestic animals. N.E. Cockett, C. Kole. Springer, 2009: 165-230.
  19. El-Sabrout K., Aggag S., JBF de Souza Jr. Some recent applications of rabbit biotechnology — a review. Animal Biotechnology, 2018, 31(1): 76-80 CrossRef
  20. Gunia M., David I., Hurtaud J., Maupin M., Gilbert H., Garreau H. Genetic parameters for resistance to non-specific diseases and production traits measured in challenging and selection environments; application to a rabbit case. Frontiers in Genetics, 2018, 9: 467 CrossRef
  21. Carneiro M., Rubin C., Palma F., Albert F., Alföldi J., Barrio A.M., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., S Younis., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi L., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel-Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand N., Lindblad-Toh K., Andersson L. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345(6200): 1074-1079 CrossRef
  22. Fontanesi L., Di Palma F., Flicek P., Smith A.T., Thulin C.G., Alves P.C., Lagomorph Genomics Consortium. LaGomiCs-Lagomorph Genomics Consortium: an international collaborative effort for sequencing the genomes of an entire Mammalian order. Journal of Heredity, 2016, 107(4): 295-308 CrossRef
  23. Linnaeus C. Systema naturae, per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Holmiae, Impensis Direct Laurentii Salvii, 1758 CrossRef
  24. O’Leary M.A., Bloch J.I., Flynn J.J., Gaudin T.J., Giallombardo A., Giannini N.P., Goldberg S.L., Kraatz B.P., Luo Z.X., Meng J., Ni X., Novacek M.J., Perini F.A., Randall Z.S., Rougier G.W., Sargis E.J., Silcox M.T., Simmons N.B., Spaulding M., Velazco P.M., Weksler M., Wible J.R., Cirranello A.L. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science, 2013, 339(6120): 662-667 CrossRef
  25. Stock A.D.  Chromosome banding pattern relationships of hares, rabbits, and pikas (order Lagomorpha). Cytogenetic and Genome Research, 1976, 17(2): 78-88 CrossRef
  26. Korstanje R., O’Brien P.C.M., Yang F., Rens W., Bosma A.A., van Lith H.A., Ferguson-Smith M.A. Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenetic and Genome Research, 1999, 86(3-4): 317-322 CrossRef
  27. Robinson T.J., Yang F., Harrison W.R. Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha). Cytogenetic and Genome Research, 2002, 96(1-4): 223-227 CrossRef
  28. Beklemisheva V.R., Romanenko S.A., Biltueva L.S., Trifonov V.A., Vorobieva N.V., Serdukova N.A., Rubtsova N.V., Brandler O.V., O’Brien P.C., Yang F., Stanyon R., Ferguson-Smith M.A., Graphodatsky A.S. Reconstruction of karyotype evolution in core Glires. I. The genome homology revealed by comparative chromosome painting. Chromosome Res., 2011, 19(4): 549-565 CrossRef
  29. Ho S., Larson G. Molecular clocks: when times are a-changin. Trends Genet., 2006, 22(2): 79-83 CrossRef
  30. Sana M. Domestication of animals in the Iberian Peninsula. In: The origins and spread of domestic animals in Southwest Asia and Europe /S. Colledge, J. Conolly, K. Dobney, K. Manning, S. Shennan (eds). Left Coast Press, Inc, 2013, 195-221.
  31. Quintana J., Ramis D., Bover P. Primera datació d’un mamífer no autòcton (Oryctolagus cuniculus [Linnaeus, 1758]) (Mammalia: Lagomorpha) del jaciment holocènic del Pas d’en Revull (barranc d’Algendar, Ferreries). Revista de Menorca, 2016, 95: 185-200.
  32. Clutton-Brock J. A natural history of domesticated mammals. Cambridge University Press, Cambridge, UK, 1999.
  33. Lewis S.T., Short C. A Latin dictionary (importacion). Oxford University Press, 1963.
  34. Varronis M.T. Rerum Rusticarum Libri Tres /G. Goetz (ed.). Lipsiae, Teubner, 1929.
  35. Nachtsheim H. Vom Wildtier zum Haustier. Berlin: Alfred Metzner, 1936.
  36. Méniel P. Callou C. (2003) De la garenne au clapier: etude archeozoologique du Lapin en Europe occidentale. Bulletin de la Société préhistorique française, 2004, 101(2): 371-372.
  37. Irving-Pease E.K., Frantz L.A.F., Sykes N., Callou C., Larson G. Rabbits and the specious origins of domestication. Trends in Ecology & Evolution, 2018, 33(3): 149-152 CrossRef
  38. Vigne J.-D. The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere. Comptes Rendus Biologies, 2011, 334(3): 171-181 CrossRef
  39. Price E.O. Behavioral development in animals undergoing domestication. Applied Animal Behaviour Science, 1999, 65(3): 245-271 CrossRef
  40. Bogolyubskii S.N. Proiskhozhdenie i preobrazovanie domashnikh zhivotnykh [The origin and transformation of domestic animals]. Moscow, 1959 (in Russ.).
  41. Moore W.J. The mammalian skull. Cambridge University Press, Cambridge, UK, 1981.
  42. Sánchez-Villagra M.R., Segura V., Geiger M., Heck L., Veitschegger K., Flores D. On the lack of a universal pattern associated with mammalian domestication: differences in skull growth trajectories across phylogeny. Royal Society Open Science, 2017, 4(10): 170876 CrossRef
  43. Wilkins A.S., Wrangham R.W., Fitch W.T. The ‘domestication syndrome’ in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics, 2014, 197(3): 795-808 CrossRef
  44. Hendrikse J.L., Parsons T.E., Hallgrímsson B. Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 2007, 9(4): 393-401 CrossRef
  45. Wayne R.K. Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution, 1986, 40(2): 243-261 CrossRef
  46. Gilyarov M.S. Biologicheskii entsiklopedicheskii slovar' [Encyclopedic dictionary of Biology]. Moscow, 1986 (in Russ.).
  47. Richardson M.K. Vertebrate evolution: the developmental origins of adult variation. BioEssays, 1999, 21(7): 604-613 CrossRef
  48. Kruska D.C.T. On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization. Brain, Behavior and Evolution, 2005, V. 65(2): 73-108 CrossRef
  49. Agren T., Engman J., Frick A., Björkstrand J., Larsson E., Furmark T., Fredrikson M. Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science, 2012, 337(6101): 1550-1552 CrossRef
  50. Davidson R.J., Putnam K.M., Larson C.L. Dysfunction in the neural circuitry of emotion regulation: a possible prelude to violence. Science, 2000, 289(5479): 591-594 CrossRef
  51. Brusini I., Carneiro M., Wang C., Rubin C., Ring H., Afonso S., Blanco-Aguiar J.A., Ferrand N., Rafati N., Villafuerte R., Smedby Ö., Damberg P., Hallböök F., Fredrikson M., Andersson L. Changes in brain architecture are consistent with altered fear processing in domestic rabbits. PNAS, 2018, 115(28): 7380-7385 CrossRef
  52. Ungar P.S. Mammal. Teeth: origin, evolution, and diversity. The Johns Hopkins University Press: Baltimore, 2010.
  53. Damuth J., Janis C.M. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews, 2011, 86(3): 733‐758 CrossRef
  54. Williams S.H., Kay R.F. A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Journal of Mammalian Evolution, 2001, 8(3): 207-229 CrossRef
  55. Böhmer E. Warum Leiden Hauskaninchen so Häufig an Gebiss-und Verdauungsproblemen? Ein Ratgeber für die Ernährung von Kaninchen. Curoxray, München, 2014.
  56. Okuda A., Hori Y., Ichihara N., Asari M., Wiggs R.B. Comparative observation of skeletal-dental abnormalities in wild, domestic, and laboratory rabbits. J. Vet. Dent., 2007, 24(4): 224-229 CrossRef
  57. Koenigswald W.V. Diversity of hypsodont teeth in mammalian dentitions — construction and classification. Palaeontographica, Abt. A: Palaeozoology — Stratigraphy, 2011, 294(1-3): 63-94 CrossRef
  58. Evolution of the Rodents: advances in phylogeny, functional morphology and development. P.G. Cox, L. Hautier (eds.). Cambridge University Press, Cambridge, 2015 CrossRef
  59. Schmidt-Kittler N. Feeding specializations in rodents. Senckenbergiana Lethaea, 2002, 82(1): 141-152 CrossRef
  60. Ge D., Yao L., Xia L., Zhang Z., Yang Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contributions to Zoology, 2015, 84(4): 267-284 CrossRef
  61. Kraatz B.P., Sherratt E., Bumacod N., Wedel M.J. Ecological correlates to cranial morphology in Leporids (Mammalia, Lagomorpha). PeerJ, 2015, 3: e844 CrossRef
  62. Koenigswald W.V, Anders U., Engels S., Schultz J.A., Ruf I. Tooth morphology in fossil and extant Lagomorpha (Mammalia) reflects different mastication patterns. Journal of Mammalian Evolution, 2010, 17(4): 275-299 CrossRef
  63. Watson P.J., Groning F., Curtis N., Fitton L.C., Herrel A., McCormack S.W., Fagan M.J. Masticatory biomechanics in the rabbit: a multi-body dynamics analysis. J. R. Soc. Interface, 2014, 11(99): 20140564 CrossRef
  64. Ardran G.M., Kemp F.H., Ride W.D.L. A radiographic analysis of mastication and swallowing in the domestic rabbit: Oryctolagus cuniculus. Proceedings of the Zoological Society of London, 1958, 130(2): 257-274 CrossRef
  65. Weijs W.A., Dantuma R. Functional anatomy of the masticatory apparatus in the rabbit (Oryctolagus cuniculus L.). Netherlands Journal of Zoology, 1981, 31(3): 99-147 CrossRef
  66. Weijs W.A., Brugman P., Grimbergen C.A. Jaw movements and muscle activity during mastication in growing rabbits. Anat. Rec., 1989, 224(3): 407-416 CrossRef
  67. Ravosa M.J., Scott J.E., McAbee K.R., Veit A.J., Fling A.L. Chewed out: an experimental link between food material properties and repetitive loading of the masticatory apparatus in mammals. PeerJ, 2015, 3: e1345 CrossRef
  68. Böhmer E. Dentistry in rabbits and rodents. Wiley Blackwell, Chichester, 2015.
  69. Böhmer C., Böhmer E. Shape variation in the craniomandibular system and prevalence of dental problems in domestic rabbits: a case study in evolutionary veterinary science. Vet Sci., 2017, 4(1): 5 CrossRef
  70. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R N., Anokhin A.P., Heath A.C., Warner B., Reeder J., Kuczynski J., Caporaso J.G., Lozupone C.A., Lauber C., Clemente J.C., Knights D., Knigh, R., Gordon J.I. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402): 222-227 CrossRef
  71. Ventura M., Turroni F., Motherway M.O., MacSharry J., van Sinderen D. Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol., 2012, 20(10): 467-476 CrossRef
  72. Milani C., Mangifesta M., Mancabelli L., Lugli G.A., James K., Duranti S., Turron, F., Ferrario C., Ossiprandi M.C., van Sinderen D., Ventura M. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J., 2017, 11(12): 2834-2847 CrossRef
  73. Stott P. Use of space by sympatric European hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) in Australia. Mammalian Biology., 2003, 68(5): 317-327 CrossRef
  74. Wallage-Drees J.M., Deinum B. Quality of the diet selected by wild rabbits (Oryctolagus cuniculus L.) in autumn and winter. Netherlands Journal of Zoology, 1986, 36(4): 438-448 CrossRef
  75. Abecia L., Rodríguez-Romero N., Yañez-Ruiz D.R., Fondevila M. Biodiversity and fermentative activity of caecal microbial communities in wild and farm rabbits from Spain. Anaerobe, 2012, 18(3): 344-349 CrossRef
  76. Gómez-Conde M.S., Pérez de Rozas A., Badiola I., Pérez-Alba L., de Blas C., Carabaño R., García J. Effect of neutral detergent soluble fibre on digestion, intestinal microbiota and performance in twenty-fiveday old weaned rabbits. Livestock Science, 2009, 125(2-3): 192-198 CrossRef
  77. Gidenne T., Jehl N., Lapanouse A., Segura M. Inter-relationship of microbial activity, digestion and gut health in the rabbit: effect of substituting fibre by starch in diets having a high proportion of rapidly fermentable polysaccharides. British Journal of Nutrition, 2004, 92(1): 95-104 CrossRef
  78. Pinheiro V., Outor-Monteiro D., Mourão J.L., Cone J.W., Lourenço A.L. Effects of animal type (wild vs. domestic) and diet alfalfa level on intake and digestibility of European adult rabbits (Oryctolagus cuniculus). J. Anim. Physiol. Anim. Nutr., 2018, 102(1): e460-e467 CrossRef
  79. Carneiro M., Ferrand N., Nachman M.W. Recombination and speciation: loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics, 2009, 181(2): 593-606 CrossRef
  80. Geraldes A., Ferrand N., Nachman M.W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics, 2006, 173(2): 919-933 CrossRef
  81. Kuznetsov V.M. Problemy biologii produktivnykh zhivotnykh, 2014, 4: 80-104 (in Russ.).
  82. Anderson C.N.K., Ramakrishnan U., Chan Y.L., Hadly E.A. A population genetics model for data from multiple populations and points in time. Bioinformatics, 2004, 21(8): 1733-1734 CrossRef
  83. Oliver F., Christians J.K., Liu X., Rhind S., Verma V., Davison C., Brown S.D., Denny P., Keightley P.D. Regulatory variation at glypican-3 underlies a major growth QTL in mice. PLoS Biology, 2005, 3(5): e135 CrossRef
  84. Pilia G., Hughes-Benzie R.M., MacKenzie A., Baybayan P., Chen E.Y., Huber R., Neri G., Cao A., Forabosco A., Schlessinger D. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat. Genet., 1996, 12(3): 241-247 CrossRef
  85. Brandvain Y., Wright S.I. The limits of natural selection in a nonequilibrium world. Trends Genet., 2016, 32(4): 201-210 CrossRef
  86. Geraldes A., Rogel‐Gaillard C., Ferrand N. High levels of nucleotide diversity in the European rabbit (Oryctolagus cuniculus) SRY gene.  Animal Genetics, 2005, 36(4): 349-351 CrossRef
  87. Khaitovich P., Hellmann I., Enard W., Nowick K., Leinweber M., Franz H., Weiss G., Lachmann M., Pääbo S. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science, 2005, 309(5742): 1850-1854 CrossRef
  88. Candille S.I., Kaelin C.B., Cattanach B.M., Yu B., Thompson D.A., Nix M.A., Kerns J.A., Schmutz S.M., Millhauser G.L., Barsh G.S. A beta-defensin mutation causes black coat color in domestic dogs. Science, 2007, 318(5855): 1418-1423 CrossRef
  89. Fang M., Larson G., Soares Ribeiro H., Li N., Andersson L. Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet., 2009, 5(1): e1000341 CrossRef
  90. Ludwig A., Pruvost M., Reissmann M., Benecke N., Brockmann G.A., Castaños P., Cieslak M., Lippold S., Llorente L., Malaspinas A., Slatkin M., Hofreiter M. Coat color variation at the beginning of horse domestication. Science, 2009, 324(5926): 485 CrossRef
  91. Kerje S., Lind J., Schütz K., Jensen P., Andersson L. Melanocortin 1-receptor (MC1R) mutations are associated with plumage color in chicken. Animal Genetics, 2003, 34(4): 241-248 CrossRef
  92. Stern D.L., Orgogozo V. The loci of evolution: how predictable is genetic evolution. Evolution, 2008, 62(9): 2155-2177 CrossRef
  93. Letko A., Ammann B., Jagannathan V., Henkel J., Leuthard F., Schelling C., Carneiro M., Drögemüller C., Leeb T. A deletion spanning the promoter and first exon of the hair cycle-specific ASIP transcript isoform in black and tan rabbits. Animal Genetics, 2019, 51(1): 137-140 CrossRef
  94. Leung C.L., Green K.J., Liem R.K. Plakins: a family of versatile cytolinker proteins. Trends in Cell Biology, 2002, 12(1): 37-45 CrossRef
  95. Jacobs D.T., Weigert R., Grode K.D., Donaldson J.G., Cheney R.E. Myosin Vc is a molecular motor that functions in secretory granule trafficking. Molecular Biology of the Cell, 2009, 20(21): 4471-4488 CrossRef
  96. Wray G.A. The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics, 2007, 8(3): 206-216 CrossRef
  97. Lindblad-Toh K., Wade C.M., Mikkelsen T.S., Karlsson E.K., Jaffe D.B., Kamal M., Clamp M., Chang J.L., Kulbokas 3rd E.J., Zody M.C., Mauceli E., Xie X., Breen M., Wayne R.K., Ostrander E.A., Ponting C.P., Galibert F., Smith D.R., DeJong P.J., Kirkness E., Alvarez P., Biagi T., Brockman W., Butler J., Chin C., Cook A., Cuff J., Daly M. J., DeCaprio D., Gnerre S., Grabherr M., Kellis M., Kleber M., Bardeleben C., Goodstadt L., Heger A., Hitte C., Kim L., Koepfli K., Parker H.G., Pollinger J.P., Searle S.M.J., Sutter N.B., Thomas R., Webber C., Baldwin J., Abebe A., Abouelleil A., Aftuck L., Ait-Zahra M., Aldredge T., Allen N., An P., Anderson S., Antoine C., Arachchi H., Aslam A., Ayotte L., Bachantsang P., Barry A., Bayul T., Benamara M., Berlin A., Bessette D., Blitshteyn B., Bloom T., Blye J., Boguslavskiy L., Bonnet C., Boukhgalter B., Brown A., Cahill P., Calixte N., Camarata J., Cheshatsang Y., Chu J., Citroen M., Collymore A., Cooke P., Dawoe T., Daza R., Decktor K., DeGray S., Dhargay N., Dooley K., Dooley K., Dorje P., Dorjee K., Dorris L., Duffey N., Dupes A., Egbiremolen O., Elong R., Falk J., Farina A., Faro S., Ferguson D., Ferreira P., Fisher S., FitzGerald M., Foley K., Foley C., Franke A., Friedrich D., Gage D., Garber M., Gearin G., Giannoukos G., Goode T., Goyette A., Graham J., Grandbois E., Gyaltsen K., Hafez N., Hagopian D., Hagos B., Hall J., Healy C., Hegarty R., Honan T., Horn A., Houde N., Hughes L., Hunnicutt L., Husby M., Jester B., Jones C., Kamat A., Kanga B., Kells C., Khazanovich D., Kieu A.C., Kisner P., Kumar M., Lance K., Landers T., Lara M., Lee W., Leger J., Lennon N., Leuper L., LeVine S., Liu J., Liu X., Lokyitsang Y., Lokyitsang T., Lui A., Macdonald J., Major J., Marabella R., Maru K., Matthews C., McDonough S., Mehta T., Meldrim J., Melnikov A., Meneus L., Mihalev A., Mihova T., Miller K., Mittelman R., Mlenga V., Mulrain L., Munson G., Navidi A., Naylor J., Nguyen T., Nguyen N., Nguyen C., Nguyen T., Nicol R., Norbu N., Norbu C., Novod N., Nyima T., Olandt P., O’Neill B., O’Neill K., Osman S., Oyono L., Patti C., Perrin D., Phunkhang P., Pierre F., Priest M., Rachupka A., Raghuraman S., Rameau R., Ray V., Raymond C., Rege F., Rise C., Rogers J., Rogov P., Sahalie J., Settipalli S., Sharpe T., Shea T., Sheehan M., Sherpa N., Shi J., Shih D., Sloan J., Smith C., Sparrow T., Stalker J., Stange-Thomann N., Stavropoulos S., Stone C., Stone S., Sykes S., Tchuinga P., Tenzing P., Tesfaye S., Thoulutsang D., Thoulutsang Y., Topham K., Topping I., Tsamla T., Vassiliev H., Venkataraman V., Vo A., Wangchuk T., Wangdi T., Weiand M., Wilkinson J., Wilson A., Yadav S., Yang S., Yang X., Young G., Yu Q., Zainoun J., Zembek L., Zimmer A., Lander E.S. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 2005, 438(7069): 803-819 CrossRef
  98. Casares-Crespo L., Fernández-Serrano P., Viudes-de-Castro M.P. Proteomic characterization of rabbit (Oryctolagus cuniculus) sperm from two different genotypes. Theriogenology, 2019, 128: 140-148 CrossRef
  99. Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418(6898): 700-707 CrossRef
  100. Pinheiro A., Woof J.M., Almeida T., Abrantes J., Alves P. C., Gortázar C., Esteves P.J. Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biology, 2014, 4(9): 140088 CrossRef 
  101. Pinheiro A., Almeida T., Esteves P.J. Survey of genetic diversity of IgG in wild and domestic rabbits. International Journal of Immunogenetics, 2015, 42(5): 364-367 CrossRef
  102. Dubiski S. Immunochemistry and genetics of a “new” allotypic specificity Ae14 of rabbit gamma-G immunoglobulins: recombination in somatic cells. J. Immunol., 1969, 103(1): 120-128.
  103. Esteves P.J., Carmo C., Godinho R., van der Loo W. Genetic diversity at the hinge region of the unique immunoglobulin heavy gamma (IGHG) gene in leporids (Oryctolagus, Sylvilagus and Lepus). International Journal of Immunogenetics, 2006, 33(3): 171-177 CrossRef
  104. Jern P., Coffin J.M. Effects of retroviruses on host genome function. Annual Review of Genetics, 2008, 42: 709-732 CrossRef
  105. Sperber G.O., Airola, T., Jern, P., Blomberg, J. Automated recognition of retroviral sequences in genomic data—RetroTector. Nucleic Acids Research, 2007, 35(15): 4964-4976 CrossRef
  106. Rivas-Carrillo S.D., Pettersson M.E., Rubin C., Jern P. Whole-genome comparison of endogenous retrovirus segregation across wild and domestic host species populations. PNAS, 2018, 115(43): 11012-11017 CrossRef
  107. Sparwel M., Doronina L., Churakov G., Stegemann A., Brosius J., Robinson T.J., Schmitz J. The volcano rabbit in the phylogenetic network of Lagomorphs. Genome Biology and Evolution, 2019, 11(1): 11-16 CrossRef
  108. Rafati N., Blanco-Aguiar J.A., Rubin C J., Sayyab S., Sabatino S.J., Afonso S., Feng C., Alves P.C., Villafuerte R., Ferrand N., Andersson L., Carneiro M. A genomic map of clinal variation across the European rabbit hybrid zone. Molecular Ecology, 2018, 27(6): 1457-1478 CrossRef
  109. Fulton J.E. Molecular genetics in a modern poultry breeding organization. World’s Poultry Science Journal, 2008, 64(2): 171-176 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)