PLANT BIOLOGY
ANIMAL BIOLOGY
SUBSCRIPTION
E-SUBSCRIPTION
 
MAP
MAIN PAGE

 

 

 

 

doi: 10.15389/agrobiology.2020.4.659eng

UDC: 576.535:57.085.23

 

THE ROLE OF MICROENVIRONMENT IN THE in vitro DIRECTED HEMATOPOIETIC PATHWAY OF MURINE EMBRYONIC STEM CELL DIFFERENTIATION (review)

I.P. Savchenkova

Federal Science Center Skryabin and Kovalenko All-Russian Research Institute of Experimental Veterinary RAS, 24/1, Ryazanskii pr., Moscow, 109428 Russia, e-mail s-ip@mail.ru (✉ corresponding author)

ORCID:
Savchenkova I.P. orcid.org/0000-0003-3560-5045

Received May 15, 2020

 

Monocytes and macrophages are the targets for many animal lentiviruses, including the equine infectious anemia virus (I.P. Savchenkova et al., 2017). The complexity of the pathogenesis and insufficient knowledge of retroviral infections necessitate the search for an adequate cell model for their in vitro study. In this regard, obtaining macrophages via directed differentiation of embryonic stem cells (ESCs) in vitro, including those genetically transformed with equine gene, is of interest for veterinary medicine (I.P. Savchenkova et al., 2016). Mouse ESCs isolated from preimplantation embryos (M.J. Evans et al., 1981; G.R. Martin, 1981) have unique properties compared to other cell types (T.C. Doetschman et al., 1985; I.P. Savchenkova et al., 1996; A.M. Wobus et al., 2003), namely an unlimited capacity to proliferate and form all types of cells of the embryo and adult organism in vitro. They can be a valuable source for in vitro production of all types of mammalian tissues and organs for experimental research, including for the study and modeling of early hematopoiesis in in vitro culture. The review discusses issues related to the in vitro hematopoietic differentiation of ESCs (A.L. Olsen et al., 2006; I. Orlovskaya et al., 2008; J.A. Briggs et al., 2017). For this, various methodological approaches are used, which have advantages and disadvantages. Effects of cytokines, hematopoietic growth factors, and feeder layers, e.g. a monolayer of stromal cells, on differentiation in vitro of ESCs are under consideration. The attention extremely focuses on indirect method of differentiation by creating embryonic bodies (EBs) in vitro and simulating a microenvironment for differentiation. The microenvironment is shown to activate the hematopoietic cytodifferentiation pathways in mouse ESCs. It has been demonstrated that the conditions of culture and differentiation in vitro closest to those enabling hematopoiesis development in vivo, increases the efficiency of hematopoietic differentiation of ESCs. It is necessary to continue the search for a panel of factors that selectively direct the development of ESCs in the mesoderm and prevent their differentiation into ectoderm and endoderm. Obtaining new data will improve existing and develop new methods for creating specialized homogeneous populations of blood cells and the immune system in vitro with desired properties. Methods are currently being developed that make it possible to obtain macrophages in culture from ESCs (A. Subramanian et al., 2009; L. Zhuang et al., 2012; M. Pittet et al., 2014). Data are presented, including the author’s own findings, on the role of the microenvironment in the differentiation of ESCs in macrophages in vitro. An indirect method of ESC differentiation through the creation of ETs in vitro and imitation of the microenvironment (addition of recombinant cytokines, the interleukin 3 and granulocyte macrophage colony-stimulating factor) can be considered as a more promising way to obtain macrophages in in vitro culture. An understanding of the regulatory mechanisms that drive the innate immune system may contribute to more effective research on lentiviruses with tropism for these cells. Production of monocytes and macrophages from ESCs in a culture of homogeneous cell population opens up new opportunities for studying the dependence of replication lentiviruses on the degree of cell differentiation.

Keywords: mouse, embryonic stem cells, embryonic bodies, differentiation, hematopoietic niche, hematopoietic stem cells, growth factors, cytokines, mononuclear phagocyte system, lentiviruses, macrophages, production, in vitro culture.

 

REFERENCES

  1. Savchenkova I.P., Yurov K.P. Veterinariya i kormlenie, 2017, 6: 6-10 (in Russ.).
  2. Hines R., Maury W. DH82 cells: a macrophage cell line for the replication and study of equine infectious anemia virus. Journal of Virological Methods, 2001, 95(1-2): 47-56 CrossRef
  3. Fidalgo-Carvalho I., Craigo J.K., Barnes S., Costa-Ramos C., Montelaro R.C. Characterization of an equine macrophage cell line: application to studies of EIAV infection. Veterinary Microbiology, 2009, 136(1-2): 8-19 CrossRef
  4. Werners A.H., Bull S., Fink-Gremmels J., Bryant C.E. Generation and characterisation of an equine macrophage cell line (e-CAS cells) derived from equine bone marrow cells. Veterinary Immunology and Immunopathology, 2004, 97(1-2): 65-76 CrossRef
  5. Evans E., Paillot R., López-Álvarez M.R. A comprehensive analysis of e-CAS cell line reveals they are mouse macrophages. Sci. Rep., 2018, 8(1): 8237 CrossRef
  6. Savchenkova I.P., Alekseenkova S.V., Yurov K.P. Voprosy virusologii, 2016, 61(3): 107-111 CrossRef (in Russ.).
  7. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292: 154-156 CrossRef
  8. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 1981, 78(12): 7634-7638 CrossRef
  9. Bradley A., Evans M., Kaufman M.H., Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309: 255-256 CrossRef
  10. Doetschman T.C., Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol., 1985, 87: 27-45.
  11. Savchenkova I.P., Zinov'eva N.A., Bulla I., Brem G. Uspekhi sovremennoi biologii, 1996, 116(1): 78-91 (in Russ.).
  12. Savchenkova I.P. Embrional'nye stvolovye kletki v biologii: nastoyashchee i budushchee [Embryonic stem cells in biology: the current state of the art and future challenges]. Dubrovitsy, 1999 (in Russ.).
  13. Savchenkova I.P. Problemy reproduktsii, 2009, 15(3): 54-59 (in Russ.).
  14. Wobus A.M., Boheler K.R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiological Reviews, 2005, 85(2): 635-678 CrossRef
  15. Nakano T. Hematopoietic stem cells: generation and manipulation. Trends Immunol., 2003, 24(11): 589-594 CrossRef
  16. Kennedy M., Keller G.M. Hematopoietic commitment of ES cells in culture. Methods in Enzymology, 2003, 365: 39-59 CrossRef
  17. Olsen A.L., Stachura D.L., Weiss M.J. Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood, 2006, 107(4): 1265-1275 CrossRef
  18. McKinney-Freeman S.L., Daley G.Q. Towards hematopoietic reconstitution from embryonic stem cells: a sanguine future. Current Opinion in Hematology, 2007, 14(4): 343-347 CrossRef
  19. Tian X., Kaufman D.S. Differentiation of embryonic stem cells towards hematopoietic cells: progress and pitfalls. Current Opinion in Hematology, 2008, 15(4): 312-318 CrossRef
  20. Wiles M.V., Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development, 1991, 111(2): 259-267.
  21. Burkert U., von Rüden R.T., Wagner E.F. Early fetal hematopoietic development from in vitro differentiated embryonic stem cells. The New Biologist, 1991, 3: 698-708.
  22. Schmitt R.M., Bruyns E., Snodgrass H.R. Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes & Dev., 1991, 5: 728-740 CrossRef
  23. Nakano T., Kodama H., Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science, 1994, 265(5175): 1098-1101 CrossRef
  24. Nakano T. In vitro development of hematopoietic system from mouse embryonic stem cells: a new approach for embryonic hematopoiesis. Int. J. Hematol., 1996, 65(1): 1-8 CrossRef
  25. Ling V., Neben S. In vitro differentiation of embryonic stem cells: immunophenotypic analysis of cultured embryoid bodies. J. Cell Physiol., 1997, 171(1): 104-115 CrossRef
  26. Schofield R. The stem cell system. Biomedicine & Pharmacotherapy, 1983, 37(8): 375-380.
  27. Spangrude G.J. Future challenges for hematopoietic stem cell research. Biotechniques, 2003, 35(6): 1273-1279 CrossRef
  28. Beerman I., Luis T.C., Singbrant S., Lo Celso C., Méndez-Ferrer S. The evolving view of the hematopoietic stem cell niche. Exp. Hematol., 2017, 50: 22-26 CrossRef
  29. Szade K., Gulati G.S., Chan C.K.F., Kao K.S., Miyanishi M., Marjon K.D., Sinha R., George B.M., Chen J.Y., Weissman I.L. Where hematopoietic stem cells live: the bone marrow niche. Antioxidants & Redox Signaling, 2018, 29(2): 191-204 CrossRef
  30. Kearney J.B., Bautch V.L. In vitro differentiation of mouse ES cells: hematopoietic and vascular development. Methods in Enzymology, 2003, 365: 83-98 CrossRef
  31. Fraser S.T., Yamashita J., Jakt L.M., Okada M., Ogawa M., Nishikawa S., Nishikawa S.-I. In vitro differentiation of mouse embryonic stem cells: hematopoietic and vascular cell types. Methods in Enzymology, 2003, 365: 59-72 CrossRef
  32. Orlovskaya I., Schraufstatter I., Loring J., Khaldoyanidi S. Hematopoietic differentiation of embryonic stem cells. Methods, 2008, 45(2): 159-167 CrossRef
  33. Weisel K.C., Gao Y., Shieh J.H., Moore M.A. Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp. Hematol., 2006, 34(11): 1505-1516 CrossRef
  34. Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., Martin R.P., Schipani E., Divieti P., Bringhurst F.R., Milner L.A., Kronenberg H.M., Scadden D.T. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425(6960): 841-846 CrossRef
  35. Kiel M.J., Yilmaz O.H., Iwashita T., Yilmaz O.H., Terhorst C., Morrison S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005, 121(7): 1109-1121 CrossRef
  36. Taichman R.S., Reilly M.J., Emerson S.G. The hematopoietic microenvironment: osteoblasts and the hematopoietic microenvironment. Hematology, 2000, 4(5): 421-426.
  37. Filippi M.D., Porteu F., Le Pesteur F., Rameau P., Nogueira M.M., Debili N., Vainchenker W., de Sauvage F.J., Kupperschmitt A.D., Sainteny F. Embryonic stem cell differentiation to hematopoietic cells: a model to study the function of various regions of the intracytoplasmic domain of cytokine receptors in vitro. Exp. Hematol., 2000, 28(12): 1363-1372 CrossRef
  38. Nakano T., Era T., Takahashi T., Kodama H., Honjo T. Development of erythroid cells from mouse embryonic stem cells in culture: potential use for erythroid transcription factor study. Leukemia, 1997, 11(Suppl. 3): 496-500.
  39. Kitajima K., Tanaka M., Zheng J., Sakai-Ogawa E., Nakano T. In vitro differentiation of mouse embryonic stem cells to hematopoietic cells on an OP9 stromal cell monolayer. Methods Enzymol., 2003, 365: 72-83 CrossRef
  40. Uzan G., Prandini M.H., Rosa J.P., Berthier R. Hematopoietic differentiation of embryonic stem cells: an in vitro model to study gene regulation during megakaryocytopoiesis. Stem Cells, 1996, 14(Suppl. 1): 194-199 CrossRef
  41. Berthier R., Prandini M.H., Schweitzer A., Thevenon D., Martin-Sisteron H., Uzan G. The MS-5 murine stromal cell line and hematopoietic growth factors synergize to support the megakaryocytic differentiation of embryonic stem cells. Exp. Hematol., 1997, 25(6): 481-49.
  42. Eto K., Murphy R., Kerrigan S.W., Bertoni A., Stuhlmann H., Nakano T., Leavitt A.D., Shattil S.J. Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proceedings of the National Academy of Sciences, 2002, 99(20): 12819-12824 CrossRef
  43. Nisitani S., Tsubata T., Honjo T. Lineage marker-negative lymphocyte precursors derived from embryonic stem cells in vitro differentiate into mature lymphocytes in vivo. International Immunology, 1994, 6(6): 909-916 CrossRef
  44. Shimizu N., Noda S., Katayama K., Ichikawa H., Kodama H., Miyoshi H. Identification of genes potentially involved in supporting hematopoietic stem cell activity of stromal cell line MC3T3-G2/PA6. Int. J. Hematol., 2008, 87(3): 239-245 CrossRef
  45. Zhang W.J., Park C., Arentson E., Choi K. Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood, 2005, 105: 111-114 CrossRef
  46. Lengerke C., Daley G.Q. Patterning definitive hematopoietic stem cells from embryonic stem cells. Experimental Hematology, 2005, 33(9): 971-979 CrossRef
  47. Gordon-Keylock S.A., Jackson M., Huang C., Samuel K., Axton R.A., Oostendorp R.A., Taylor H., Wilson J., Forrester L.M. Induction of hematopoietic differentiation of mouse embryonic stem cells by an AGM-derived stromal cell line is not further enhanced by overexpression of HOXB4. Stem Cells and Development, 2010, 19(11): 1687-1698 CrossRef
  48. Chen D., Lewis R.L., Kaufman D.S. Mouse and human embryonic stem cell models of hematopoiesis: past, present, and future. Biotechniques, 2003, 35(6): 1253-1261 CrossRef
  49. Savchenkova I.P., Flyaishmann M., Bulla I., Brem G. Tsitologiya, 1996, 38(10): 1118-1123 (in Russ.).
  50. Savchenkova I.P. V knige: Zhivotnaya kletka v kul'ture (metody i primenenie v biotekhnologii) (2-e izd., dopolnennoe). Pod redaktsiei L.P. D’yakonova [Animal cell culture (methods and applications in biotechnology) (2nd ed., revised). L.P. D’yakonov (ed.)]. Moscow, 2009: 347-379 (in Russ.).
  51. Konno T., Akita K., Kurita K., Ito Y. Formation of embryoid bodies by mouse embryonic stem cells on plastic surfaces. Journal of Bioscience and Bioengineering, 2005, 100(1): 88-93 CrossRef
  52. Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering, 2007, 103(5): 389-398 CrossRef
  53. Behringer R., Gertsenstein M., Nagy K.V., Nagy A. Differentiating mouse embryonic stem cells into embryoid bodies by hanging-drop cultures. Cold Spring Harb. Protoc., 2016, 1(12) CrossRef
  54. Wang X., Yang P. In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method. J. Vis. Exp., 2008, 23(17): e825 CrossRef
  55. Carpenedo R.L., Sargent C.Y., McDevitt T.C. Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells, 2007, 25(9): 2224-2234 CrossRef
  56. Wu H.-W., Hsiao Y.-H., Chen C.-C., Yet S.-F., Hsu C.-H. A PDMS-based microfluidic hanging drop chip for embryoid body formation. Molecules, 2016, 21(7): 882 CrossRef
  57. Liu J.F, Chen Y.M., Yang J.J., Kurokawa T., Kakugo A., Yamamoto K., Gong J.P. Dynamic behavior and spontaneous differentiation of mouse embryoid bodies on hydrogel substrates of different surface charge and chemical structures. Tissue Engineering Part A, 2011, 17(17-18): 2343-2357 CrossRef
  58. Savchenkova I.P. V knige: Zhivotnaya kletka v kul'ture (metody i primenenie v biotekhnologii) /Pod redaktsiei L.P. D’yakonova, V.I. Sit'kova [In: Animal cell culture (methods and applications in biotechnology). L.P. D’yakonov, V.I. Sit’kov (eds.)]. Moscow, 2000: 244-273 (in Russ.).
  59. Koike M., Sakaki S., Amano Y., Kurosawa H. Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies. Journal of Bioscience and Bioengineering, 2007, 104(4): 294-299 CrossRef
  60. Brickman J.M., Serup P. Properties of embryoid bodies. WIREs Dev. Biol., 2017, 6(2): e259 CrossRef
  61. Briggs J.A., Li V.C., Lee S., Woolf C.J., Klein A., Kirschner M.W. Mouse embryonic stem cells can differentiate via multiple paths to the same state. eLife, 2017, 6: e26945 CrossRef
  62. Park C., Lugus J.J., Choi K. Stepwise commitment from embryonic stem to hematopoietic and endothelial cells. Current Topics in Developmental Biology, 2005, 66: 1-36 CrossRef
  63. Dang S.M., Kyba M., Perlingeiro R., Daley G.Q., Zandstra P.W. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng., 2002, 78(4): 442-53 CrossRef
  64. Choi K., Chung Y.S., Zhang W.J. Hematopoietic and endothelial development of mouse embryonic stem cells in culture. In: Developmental hematopoiesis. Methods in molecular medicine, vol. 105. M.H. Baron (ed.). Humana Press, Totowa, NJ, 2005: 359-368 CrossRef
  65. Shen J., Qu C.K. In vitro hematopoietic differentiation of murine embryonic stem cells. In: Hematopoietic stem cell protocols. Methods in molecular biology™, vol. 430. K.D. Bunting (ed.). Humana Press, 2008: 103-118 CrossRef
  66. Liu H., Roy K. Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Engineering, 2005, 11(1-2): 319-330 CrossRef
  67. Taqvi S., Roy K. Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials, 2006, 27(36): 6024-6031 CrossRef
  68. Kinney M.A., Saeed R., McDevitt T.C. Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size. Integrative Biology, 2012, 4(6): 641-650 CrossRef
  69. Dias A.D., Unser A.M., Xie Y., Chrisey D.B., Corr D.T. Generating size-controlled embryoid bodies using laser direct-write. Biofabrication, 2014, 6(2): 025007 CrossRef
  70. Nakano Y., Iwanaga S., Mizumoto H., Kajiwara T. Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells. Cytotechnology, 2018, 70(3): 975-982 CrossRef
  71. Biesecker L.G., Emerson S.G. Interleukin-6 is a component of human umbilical cord serum and stimulates hematopoiesis in embryonic stem cells in vitro. Exp. Hematol., 1993, 21(6): 774-778.
  72. Lieschke G.J., Dunn A.R. Development of functional macrophages from embryonal stem cells in vitro. Exp. Hematol., 1995, 23(4): 328-334.
  73. Matsumoto K., Isagawa T., Nishimura T., Ogaeri T., Eto K., Miyazaki S., Miyazaki J., Aburatani H., Nakauchi H., Ema H. Stepwise development of hematopoietic stem cells from embryonic stem cells. PLoS ONE,2009, 4(3): e4820 CrossRef
  74. Burt R.K., Verda L., Kim D.A., Oyama Y., Luo K., Link C. Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J. Exp. Med., 2004, 199(7): 895-904 CrossRef
  75. Dang S.M., Gerecht-Nir S., Chen J., Itskovitz-Eldor J., Zandstra P.W. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells, 2004, 22(3): 275-282 CrossRef
  76. de Souza G.T., Maranduba C.P., de Souza C.M., do Amaral D.L., da Guia F.C., Zanette Rde S., Rettore J.V., Rabelo N.C., Nascimento L.M., Pinto Í.F., Farani J.B., Neto A.E., Silva Fde S., Maranduba C.M., Atalla A. Advances in cellular technology in the hematology field: What have we learned so far? World J. Stem Cells, 2015, 7(1): 106-115 CrossRef
  77. Hume D. The mononuclear phagocyte system. Current Opinion in Immunology, 2006, 18(1): 49-53 CrossRef
  78. Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M., Ley K. Development of monocytes, macrophages and dendritic cells. Science, 2010, 327(5966): 656-661 CrossRef
  79. Ginhoux F., Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity, 2016, 44(3): 439-449 CrossRef
  80. McGrath K.E., Frame J.M., Palis J. Early hematopoiesis and macrophage development. Seminars in Immunology, 2015, 27(6): 379-387 CrossRef
  81. Pittet M.J., Nahrendorf M., Swirski F.K. The journey from stem cell to macrophage. Ann. N. Y. Acad. Sci., 2014, 1319(1): 1-18 CrossRef
  82. Young D.A., Lowe L.D., Clark S.C. Comparison of the effects of IL-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity. Journal of Immunology, 1990, 145(2): 607-615.
  83. Moore K.J., Fabunmi R.P., Andersson L.P., Freeman M.W. In vitro-differentiated embryonic stem cell macrophages: a model system for studying atherosclerosis-associated macrophage functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18(10): 1647-1654 CrossRef
  84. Zhuang L., Pound J.D., Willems J.J., Taylor A.H., Forrester L.M., Gregory C.D. Pure populations of murine macrophages from cultured embryonic stem cells. Application to studies of chemotaxis and apoptotic cell clearance. Journal of Immunological Methods, 2012, 385(1-2): 1-14 CrossRef
  85. Subramanian A., Guo B, Marsden M.D., Galic Z., Kitchen S., Kacena A., Brown H.J., Cheng G., Zack J.A. Macrophage differentiation from embryoid bodies derived from human embryonic stem cells. J. Stem Cells, 2009, 4: 29-45.
  86. Savchenkova I.P., Savchenkova E.A., Osipova Yu.A. Geny i kletki, 2019, 14(S1): 202-203 (in Russ.).
  87. Savchenkova I.P., Savchenkova E.A. Vestnik transplantologii i iskusstvennykh organov, 2019, XXI(S): 160 (in Russ.).

 

back

 


CONTENTS

 

 

Full article PDF (Rus)

Full article PDF (Eng)