doi: 10.15389/agrobiology.2019.4.631eng

UDC: 636.2:636.082.12

Supported financially by the Russian Science Foundation within Project No. 19-76-20012



N.A. Zinovieva1, A.A. Sermyagin1, A.V. Dotsev1,
O.I. Boronetslaya2, L.V. Petrikeeva2,
A.S. Abdelmanova1, G. Brem1, 3

1Ernst Federal Science Center for Animal Husbandry, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia, e-mail (✉ corresponding author),,,;
2Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia, e-mail,;
3Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail

Zinovieva N.A.
Boronetslaya O.I.
Sermyagin A.A.
Petrikeeva L.V.
Dotsev A.V.
Brem G.
Abdelmanova A.S.

Received March 7, 2019


In modern biological science, the study and conservation of biodiversity is considered as one of the important field of research (L.F. Groeneveld et al., 2010). In the twentieth century, only a limited number of breeds was used in animal husbandry worldwide, which led to a significant decrease in the number of local breeds, which until recently were actively involved in agricultural production (B. Rischkowsky et al., 2007). This review describes the current state of knowledge in research of the gene pool of cattle, with special attention paid to Russian genetic resources. The evolution of methods used for the studies of genetic diversity is briefly described. The results of studies of allele pool of cattle breeds based on analysis of polymorphism of mitochondrial DNA and microsatellites are summarized (M.-H. Li et al., 2009; J. Kantanen et al., 2009; P.V. Gorelov et al., 2011; T.Yu. Kiseleva et al., 2014; A.A. Traspov et al., 2011; R. Sharma 2015). The advantages of using single nucleotides polymorphisms (SNP) at genome-wide level to study the population structure and genetic relationships between breeds are discussed (R. Fries et al., 2001; R. Martinez-Arias et al., 2001; C. Xing et al., 2005). Data on the divergence of breeds based on the analysis of their whole-genome SNP genotypes are presented (J.E. Decker et al., 2009; L.A. Kuehn et al., 2011; E.J. Mctavish et al., 2013; J.E. Decker et al., 2014; J.E. Decker et al., 2016; T. Iso-Touru et al., 2016). The allele pool of modern populations of the Russian cattle breeds is characterized (N.A. Zinovieva et al., 2016; A. Yurchenko et al., 2018; A.A. Sermyagin et al., 2018). In comparative studies of Eurasian taurine breeds, the high genetic divergence of Yakut cattle was detected. The review shows the maintenance of the significant part of authentic genetic components in the several Russian breeds (Kholmogor, Yaroslavl, Red Gorbatov), which allows us to consider them as the most valuable national genetic resources and confirms the need for a more in-depth studies and preservation of these breeds. It is noted that the use of even such a powerful tool as the analysis of multiple SNPs does not always allow unambiguous interpretation of the results from the point of view of the demographic history of Russian breeds. This is due to significant changes in the allele pool of modern populations of both Russian breeds and breeds that presumably took part in their formation. The informative power of results obtained in the study of the evolution of breeds using molecular genetic methods can be substantially enhanced by involvement in research of the historical DNA samples, such as bone material from the cranial and osteological collections (O.I. Boronetska et al., 2017). Currently, methods have been developed to obtain DNA, which are suitable for a wide range of molecular genetic studies of both mitochondrial and nuclear DNA, including analysis at the level of individual genes, and complete genomes (D.E. McHugh et al., 2000; A. Beja-Pereira et al., 2006; M. Gargani et al., 2015). Involvement the historical samples in the studies will provide new data on the evolution of allele pool of the Russian breeds and clarify the origin of modern populations. The results of such studies will be used in the developing the programs for the conservation of breeds, as well as in establishing the organic production systems based on the use of local genetic resources.

Keywords: biodiversity, Russian cattle breeds, DNA markers, historical DNA samples.



  1. Groeneveld L.F., Lenstra J.A., Eding H., Toro M.A., Scherf B., Pilling D., Negrini R., Finlay E.K., Jianlin H., Groeneveld E., Weigend S., GLOBALDIV Consortium. Genetic diversity in farm animals — a review. Anim. Genet., 2010, 41: 6-31 CrossRef
  2. Toro M., Fernández J., Caballero A. Molecular characterization of breeds and its use in conservation. Livestock Science, 2009, 120(3): 174-195 CrossRef
  3. The state of the world’s animal genetic resources for food and agriculture. B. Rischkowsky, D. Pilling (eds.). FAO, Rome, Italy, 2007.
  4. Chislennost' porodnogo skota v kolkhozakh i sovkhozakh SSSR na 1 yanvarya 1960 g. Statisticheskii sbornik [The number of pedigree cattle in collective and state farms of the USSR on January 1, 1960. Statistical digest]. Moscow, 1961 (in Russ.). 
  5. Ezhegodnik po plemennoi rabote v molochnom skotovodstve v khozyaistvakh Rossiiskoi Federatsii (1991 god) [Yearbook on breeding in dairy cattle farms of the Russian Federation (1991)]. Moscow, 1992 (in Russ.). 
  6. Ezhegodnik po plemennoi rabote v molochnom skotovodstve v khozyaistvakh Rossiiskoi Federatsii (2015 god) [Yearbook on breeding in dairy cattle farms of the Russian Federation (2015)]. Moscow, 2016 (in Russ.). 
  7. Yang W., Kang X., Yang Q., Lin Y., Fang M. Review on the development of genotyping methods for assessing farm animal diversity. Journal of Animal Science and Biotechnology, 2013, 4(1): 2-6 CrossRef
  8. Rendel J. Relationships between blood groups and the fat percentage of the milk in cattle. Nature, 1961, 189: 408-409.
  9. Neimann-Sorensen A., Robertson A. The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agriculturae Scandinavica, 1961, 11(2): 163-196 CrossRef
  10. Kühn Ch., Freyer G., Weikard R., Goldammer T., Schwerin M. Detection of QTL for milk production traits in cattle by application of a specifically developed marker map of BTA6. Animal Genetics, 1999, 30(5): 333-340 CrossRef
  11. Loftus R.T., MacHugh D.E., Bradley D.G., Sharp P.M., Cunningham E.P. Evidence for two independent domestications of cattle. PNASUSA, 1994, 91: 2757-2761 CrossRef
  12. Loftus R.T., MacHugh D.E., Ngere L.O., Balain D.S., Badi A.M., Bradley D.G., Cunningham E.P. Mitochondrial genetic variation in European, African and Indian cattle populations. Animal Genetics, 1994, 25(4): 265-271 CrossRef
  13. Bradley D.G., MacHugh D.E., Cunningham P., Loftus R.T. Mitochondrial diversity and the origins of African and European cattle. PNAS USA, 1996, 93(10): 5131-5135 CrossRef
  14. MacHugh D.E., Shriver M.D., Loftus R.T., Cunningham P., Bradley D.G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics, 1997, 146(3): 1071-1086.
  15. Loftus R.T., Ertugrul O., Harba A.H., El-Barody M.A.A., MacHugh D.E., Park S.D.E., Bradley D.G. A microsatellite survey of cattle from a centre of origin: the Near East. Molecular Ecology, 1999, 8(12): 2015-2022 CrossRef
  16. Edwards C.J., Baird J.F., MacHugh D.E. Taurine and zebu admixture in Near Eastern cattle: a comparison of mitochondrial, autosomal and Y-chromosomal data. Animal Genetics, 2007, 38(5): 520-524 CrossRef
  17. Cymbron T., Freeman A.R., Isabel Malheiro M., Vigne J.D., Bradley D.G. Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations. Proc. R. Soc. B., 2005, 272: 1837-1843 CrossRef
  18. Li M.-H., Kantanen J. Genetic structure of Eurasian cattle (Bos taurus) based on microsatellites: clarification for their breed classification. Animal Genetics, 2009, 41(2): 150-158 CrossRef
  19. MacNeil M.D., Alexander L.J., Kantanen J., Ammosov I.A., Ivanova Z.I., Popov R.G., Ozerov M., Millbrooke A., Cronin M.A. Potential emigration of Siberian cattle germplasm on Chirikof Island, Alaska. Journal of Genetics, 2017, 96(1): 47-51 CrossRef
  20. Sharma R., Kishore A., Mukesh M., Ahlawat S., Maitra A., Kumar Pandey A., Tantia M.S. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genetics, 2015, 16: 73 CrossRef
  21. Kantanen J., Edwards C.J., Bradley D.G., Viinalass H., Thessler S., Ivanova Z., Kiselyova T., Ćinkulov M., Popov R., Stojanović S., Ammosov I., Vilkki J. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity, 2009, 103(5): 404-415 CrossRef
  22. Gorelov P.V., Kol'tsov D.N., Zinov'eva N.A., Gladyr' E.A. The comparative analysis of blood groups and microsatellites in characteristics of new cattle types of brown Swiss and Sychevskaja breeds. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 6: 37-40 (in Engl.). 
  23. Kiseleva T.Yu., Kantanen J., Vorobyov N.I., Podoba B.E., Terletsky V.P. Linkage disequilibrium analysis for microsatellite loci in six cattle breeds. Russian Journal of Genetics, 2014, 50: 406-414 CrossRef
  24. Dolmatova I.Yu., Zinov'eva N.A., Gorelov P.V., Il'yasov A.D., Gladyr' E.A., Traspov A.A., Sel'tsov V.I. Allele pool characteristics of Bashkiria population of Simmental cattle using microsatellites. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 6: 70-74 (in Engl.). 
  25. Ernst L.K., Beguchev A.P., Levantin D.L. Skotovodstvo [Cattle breeding]. Moscow, 1977 (in Russ.). 
  26. Felius M. Cattle breeds — an encyclopedia. Misset, Doetinchem, The Netherlands, 1995.
  27. Stolpovskii Yu.A., Lazebnyi O.E., Stolpovskii K.Yu., Culimova G.E. Genetika, 2010, 46(6): 1-9 (in Russ.). 
  28. Glazko V.I., Feofilov A.V., Bardukov N.V., Glazko T.T. Izvestiya Timiryazevskoi sel'skokhozyaistvennoi akademii, 2012, 1: 118-125 (in Russ.). 
  29. Stolpovskii Yu.A., Akhani Azari M., Evsyukov A.N., Kol N.V., Ruzina M.N., Voronkova V.N., Culimova G.E. Genetika, 2011, 47(2): 213-226 (in Russ.). 
  30. Stolpovskii Yu.A., Akhani Azari M., Evsyukov A.N., Kol N.V., Ruzina M.N., Voronkova L.N., Culimova G.E. Differentiation of cattle breeds with the use of multilocus intermicrosatellite analysis (ISSR-PCR). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 4: 36-45 (in Engl.). 
  31. Khlestkina E.K. Vavilovskii zhurnal genetiki i selektsii, 2013, 17(4/2): 1044-1054 (in Russ.). 
  32. Coates B.S., Sumerford D.V., Miller N.J., Kim K.S., Sappington T.W. Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. Journal of Heredity, 2009, 100(5): 556-564 CrossRef
  33. Fries R., Durstewitz G. Digital DNA signatures for animal tagging. Nature Biotechnology, 2001, 19(6): 508 CrossRef
  34. Martınez-Arias R., Calafell F., Mateu E., Comas D., Andre´s A., Bertranpetit J. Sequence variability of a human pseudogene. Genome Research, 2001, 11(6): 1071-1085 CrossRef
  35. Xing C., Schumacher F.R., Xing G., Lu Q., Wang T., Elston R.C. Comparison of microsatellites, single-nucleotide polymorphisms (SNPs) and composite markers derived from SNPs in linkage analysis. BMC Genetics, 2005, 6(Suppl. 1): S29 CrossRef
  36. Morin P.A., Luikart G., Wayne R.K., Grp S.N.P.W. SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution, 2004, 19(4): 208-216 CrossRef
  37. Vignal A., Milan D., SanCristobal M., Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics, Selection, Evolution, 2002, 34(3): 275-305 CrossRef
  38. Steemers F.J., Gunderson K.L. Whole genome genotyping technologies on the BeadArrayTM platform. Biotechnology Journal, 2007, 2(1): 41-49 CrossRef
  39. Shen R., Fan J.B., Campbell D., Chang W., Chen J., Doucet D., Yeakley J., Bibikova M., Garcia E.W., McBride C., Steemers F., Garcia F., Kermani B.G., Gunderson K., Oliphant A. High-throughput SNP genotyping on universal bead arrays. Mutation Research, 2005, 573(1-2): 70-82 CrossRef
  40. Decker J.E., Pires J.C., Contant G.C., McKay S.D., Heaton M.P., Chen K., Cooper A., Vilkki J., Seabury C.M., Caetano A.R., Johnson G.S., Brenneman R.A., Hanotte O., Eggert L.S., Wiener P., Kim J.-J., Kim K.S., Sonstegard T.S., Van Tassell C.P., Neibergs H.L., McEwan J.C., Brauning R., Coutinho L.L., Babar M.E., Wilson G.A., McClure M.C., Rolf M.M., Kim J.W., Schnabel R.D., Taylor J.F. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. PNAS USA, 2009, 106(44): 18644-18649 CrossRef
  41. Kuehn L.A., Keele J.W., Bennett G.L., McDaneld T.G., Smith T.P., Snelling W.M., Sonstegard T.S., Thallman R.M. Predicting breed composition using breed frequencies of 50,000 markers from the US Meat Animal Research Center 2,000 Bull Project. J. Anim. Sci., 2011, 89(6): 1742-1750 CrossRef
  42. McTavish E.J., Decker J.E., Schnabel R.D., Taylor J.F., Hillis D.M. New World cattle show ancestry from multiple independent domestication events. PNAS USA, 2013, 110(15): 1398-1406 CrossRef
  43. Decker J.E., McKay S.D., Rolf M.M., Kim J., Molina Alcalá A., Sonstegard T.S., Hanotte O., Götherström A., Seabury C.M., Praharani L., Babar M.E., Regitano L.C.A., Yildiz M.A., Heaton M.P., Wan-Sheng L., Lei C.-Z., Reecy J.M., Saif-Ur-Rehman M., Schnabel R.D., Taylor J.F. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle.  PLoS Genet., 2014, 10(3): e1004254 CrossRef
  44. Decker J.E., Taylor J.F., Cronin M.A., Alexander L.J., Kantanen J., Millbrooke A., Schnabel R.D., MacNeil M.D. Origins of cattle on Chirikof Island, Alaska elucidated from genome-wide SNP genotypes. Journal of Heredity, 2016, 116(6): 502-505 CrossRef
  45. Iso-Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Animal Genetics, 2016, 47(6): 647-657 CrossRef
  46. Zinovieva N.A., Dotsev A.V., Sermyagin A.A., Wimmers K., Reyer H., Sölkner J., Deniskova T.E., Brem G. Study of genetic diversity and population structure of five Russian cattle breeds using whole genome SNP analysis. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(6): 788-800 CrossRef
  47. Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity, 2018, 120(2): 125-137 CrossRef
  48. Sermyagin A.A., Dotsev A.V., Gladyr E.A., Traspov A.A., Deniskova T.E., Kostjunina O.V., Reyer H., Wimmers K., Barbato M., Paronyan I.A., Plemyashov K.V., Sölkner J., Popov R.G., Brem G., Zinovieva N.A. Whole-genome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds. Genetics, Selection, Evolution, 2018, 50: 37 CrossRef
  49. Katmakov P.S., Gavrilenko V.P., Bushov A.V., Sten'kin N.I. Vestnik Ul'yanovskoi GSKHA, 2014, 1(25): 126-132 (in Russ.). 
  50. Kertiev R.M., Parkhomenko L.A., Nikulkin N.S., Vysotskaya V.M., Parkhomenko L.B. Zootekhniya, 2016, 2: 14-15 (in Russ.).
  51. Prozherin V.P., Yaluga V.L. Zootekhniya, 2017, 7: 6-9 (in Russ.).
  52. Kavardakova O., Kuznetsov V. Molochnoe i myasnoe skotovodstvo, 2007, 7: 37-38 (in Russ.).
  53. Bydantseva E., Kavardakova O. Molochnoe i myasnoe skotovodstvo, 2012, 3: 17-18 (in Russ.).
  54. Sulimova G.E., Lazebnaya I.V., Perchun A.V., Voronkova V.N., Ruzina M.N., Badin G.A. Dostizheniya nauki i tekhniki APK, 2011, 9: 52-54 (in Russ.).
  55. Kazakov D.S., Belokurov S.G. Vestnik biotekhnologii, 2017, 2: 11 (in Russ.).
  56. Novikov V.M., Kol'tsov D.N., Tsys' V.I., Leutina D.V., Tatueva O.V. Genetika i razvedenie zhivotnykh, 2016, 1: 46-51 (in Russ.).
  57. Spetsializirovannyi portal «Byki-proizvoditeli». Available Accessed 17.03.2018 (in Russ.).
  58. Moser C., Reiter M. Die Rinderrasse der Tux-Zillertaler — Ein Stück Tiroler Kultur. Verlag Edition Tirol, 1996.
  59. Tux Zillertaler. Available Additional_Breeds/Tux_Zillertaler.html. Accessed 18.03.2018.
  60. Liskun E.F. Otechestvennye porody krupnogo rogatogo skota [Cattle breeds]. Moscow, 1949 (in Russ.).
  61. Boronetskaya O.I., Chikurova E.A., Nikiforov A.I. Izvestiya TSKHA, 2017, 6: 68-84 CrossRef (in Russ.).
  62. Brauner A. Porody sel'skokhozyaistvennykh zhivotnykh. Krupnyi rogatyi skot [Breeds of farm animals. Cattle]. Odessa, 1922 (in Russ.).
  63. Liskun E.F. V knige: Izbrannye trudy /Pod redaktsiei E.A. Arzumanyana [In: Selected works. E.A. Arzumanyan (ed.)]. Moscow, 1961: 42-75 (in Russ.).
  64. Boronetskaya O.I., Barbosova M.E., Nikiforov A.I., Bykova A.V., Mikheenkov V.E., Rabadanova G.Sh., Petrikeeva L.V., Polurotova A.I., Rukavitsina E.A. Katalog kraniologicheskoi kollektsii akademika E.F. Liskuna /Pod redaktsiei V.P. Panova [Catalogue of the Liskun Craniological Collection. V.P. Panov (ed.)]. Moscow, 2012 (in Russ.).
  65. MacHugh D.E., Edwards C.J., Bailey J.F., Bancroft D.R., Bradley D.G. The extraction and analysis of ancient DNA from bone and teeth: a survey of current methodologies. Ancient Biomolecules, 2000, 3(2): 81-102.
  66. Beja-Pereira A., Caramelli D., Lalueza-Fox C., Vernesi C., Ferrand N., Casoli A., Goyache F., Royo L.J., Conti S., Lari M., Martini A., Ouragh L., Magid A., Atash A., Zsolnai A., Boscato P., Triantaphylidis C., Ploumi K., Sineo L., Mallegni F., Taberlet P., Erhardt G., Sampietro L., Bertranpetit J., Barbujani G., Luikart G., Bertorelle G. The origin of European cattle: evidence from modern and ancient DNA. PNASUSA, 2006, 103(21): 8113-8118 CrossRef
  67. Gargani M., Pariset L., Lenstra J.A., De Minicis E., European Cattle Genetic Diversity Consortium, Valentini A. Microsatellite genotyping of medieval cattle from central Italy suggests an old origin of Chianina and Romagnola cattle. Frontiers in Genetics, 2015, 6: Article 68 CrossRef







Full article PDF (Rus)