doi: 10.15389/agrobiology.2019.4.820eng

UDC: 636.52/.58:591.1:636.085.12:546.763

Supported financially by the Ministry of Science and Education of the Russian Federation for basic research according to the program of RAS Presidium (Agreement No. 075-02-2019-1847)



S.V. Lebedev1, 2, I.A. Gavrish1, 2, I.Z. Gubajdullina1, S.V. Shabunin3

1Federal Research Centre of Biological Systems and Agrotechnologies RAS, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia, e-mail, (✉ corresponding author);
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia, e-mail;
3All-Russian Research Veterinary Institute of Pathology, Pharmacology and Therapy, 114в, ul. Lomonosova, Voronezh, 394087 Russia, e-mail

Lebedev S.V.
Gubaydullina I.Z.
Gavrish I.A.
Shabunin S.V.

Received January 26, 2019


Chromium is important chemical element for humans and animals which essentiality is manifested in reducing the amount of glucose and cholesterol in blood, reducing body fat. Factors which influence the absorption of chromium are source, size and composition of diet. Reducing size of Cr particles allows one to increase absorption. Replacement of traditional sources of microelements for organic and ultrafine metal forms is prospective due to their surface area, higher reactivity and bioavailability. In this paper, we show for the first time that Cr2O3 nanoparticles (NPs) at doses of 50 to 100 µg/kg of feed have no toxic effect, improve productive performance through stimulation of digestive enzymes and have positive effect on accumulation of the element in broiler chicken carcass. Our goal was to estimate effects of various doses of dietary chromium nanoparticles on the activity of digestive enzymes, biochemical blood parameters and gut microbiota in Arbor Aikres broiler chickens (Gallus gallus) (OAO Orenburg Poultry Farm, 2018). Five groups of chickens were formed, control and test groups 1, 2, 3, and 4 (n = 30 each) with live weight from 160 to 180 g. The control birds during experiment (0-14-21-42 days) received the basic diet, the birds of groups 1, 2, 3, and 4 additionally received 50, 100, 200 and 400 μg/kg feed of dietary Cr2O3 NPs (d = 91 nm; Platina LLC, Moscow, Russia). Addition of 200-400 µg/kg Cr2O3 NPs increased body weight and improved feed conversion by 3.1-3.9 and 7-11 %, respectively (p ≤ 0.05), compared to control. Cr incorporation into carcass was 28.2 and 25.6 % higher when broilers were fed with NPs at 200 and 400 μg/kg, respectively, while this index in droppings was 15 % lower. Increased Crfeed/Crdroppings (1.5-2.5) and Crfeed/Crcarcass (4.6-6.4) values in the test groups indicate better absorption of chromium in the gastrointestinal tract. Cr2O3 NPs caused higher activity of endogenous transferases, the alanine aminotransferase and aspartate aminotransferase. Catalase and superoxide dismutase activity remained unchanged as well as concentration of malonic dialdehyde. That is, chromium acts as antioxidant, with up to 18 % increase (р ≤ 0.05) in blood NO-metabolites. Cr2O3 NPs stimulate activity of blood enzymes: by 29.5 % (group IV, p ≤ 0.05) on day 21 for amylase, by 19-30 % (group III and IV, p ≤ 0.05) on days 21 and 42 for lipase, followed by a decrease in lipolytic activity by the end of the experiment in the test groups compared to day. NPs of 50 and 400 μg/kg suppressed amylase and activated lipase and protease in the duodenal chymeduction, with an increase in pH of the intestinal contents from 4.62 to 9.34 in all test groups. In droppings, digestive enzymes showed a reverse trend. Dietary Cr2O3 NPs at 50 µg/kg decreased the number of bifidobacteria, staphylococci and Salmonella in droppings, at 100 μg/kg increased the counts of enterobacteria, and at 400 μg/kg, on the contrary, reduced enterobacteria by 20 %, with simultaneous restriction Salmonella abundance in the cecum. Dietary Cr2O3 NPs decreased bifidobacteria. Thus, the dietary Cr2O3 NPs at 50-100 µg/kg has more pronounced positive effect and can be used as a chromium additive for poultry (for example, in premixes or vitamin-mineral complexes).

Keywords: chicken-broilers, antioxidant enzymes, Cr, productivity, concentration of Cr, biochemical parameters of blood, digestive enzymes.



  1. National research council. Mineral tolerance of animals. Second revised edition. National Academy Press, Washington DC, 2005 CrossRef
  2. Anderson R.A., Bryden N.A., Polansky M.M. Lack of toxicity of chromium chloride and chromium picolinate in rats. J. Am. Coll. Nutr., 1997, 16: 273-279 CrossRef
  3. Simonoff M., Llabador Y., Hamon C., Peers A.M., Simonoff G.N. Low plasma chromium in patients with coronary artery and heart diseases. Biol. Trace Elem. Res., 1984, 6: 431-439 CrossRef
  4. Anderson R.A. Chromium. In: Trace elements in human and animal nutrition. 5th edition. Academic Press, San Diego, CA, 1987.
  5. Linder M.C. Nutrition and metabolism of the trace elements. In: Nutritional biochemistry and metabolism: with clinical applications. M.C. Linder (ed.). Prentice Hall, NY, 1991.
  6. Onderci M., Sahin K., Sahin N., Cikim G., Vijaya J., Kucuk O. Effects of dietary combination of chromium and biotin on growth performance, carcass characteristics, and oxidative stress markers in heat-distressed Japanese quail. Biol. Trace Elem. Res., 2005, 106(2): 165-176 CrossRef
  7. National Research Council. Nutrient Requirements of Swine. 10th revised edition. National Academy Press, Washington DC, 1998 CrossRef
  8. Doisy R.J., Streeten D.H.P., Souma M.L., Kalafer M.E., Rekant S.L., Dalakos T.G. Metabolism of chromium 51 in human subjects (Vol. 155). Marcel Dekker, NY, 1971.
  9. Oberlis D., Kharland B., Skal'nyi A. Biologicheskaya rol' makro- i mikroelementov u cheloveka i zhivotnykh [Biological role of macro- and microelements in human and animals]. St. Petersburg, 2008 (in Russ.). 
  10. Moeini M.M., Bahrami A., Ghazi S., Targhibi M.R. The effect of different levels of organic and inorganic chromium supplementation on production performance, carcass traits and some blood parameters of broiler chicken under heat stress condition. Biol. Trace Elem. Res., 2011, 144(1-3): 715-724 CrossRef
  11. Ban C., Park S.J., Lim S., Choi S.J., Choi Y.J. Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. J. Agric. Food Chem., 2015, 63(21): 5266-5272 CrossRef
  12. Wang M.Q., Xu Z.R. Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian Australasian Journal of Animal Sciences, 2004, 17: 1118-1122 CrossRef
  13. Wang M.Q., Xu Z.R., Zha L.Y., Lindemann M.D. Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Animal Feed Science and Technology, 2007, 139(1-2): 69-80 CrossRef
  14. Motozono Y., Hatano K., Sugawara N., Ishibashi T. Effects of dietary chromium picolinate on growth, carcass quality and serum lipids of female broilers. Nihon Chikusan Gakkaiho, 1998, 69(7): 659-665 CrossRef
  15. Ugolev A.M., Kuz'mina V.V. Pishchevaritel'nye protsessy i adaptatsii u ryb [Digestion and adaptations in fish]. Moscow, 1993 (in Russ.). 
  16. Ugolev A.M. Membrannoe pishchevarenie: polisubstratnye protsessy, organizatsiya i regulyatsiya [Membrane digestion: polysubstrate processes, organization and regulation]. Moscow, 1972 (in Russ.). 
  17. Metodicheskie rekomendatsii po kormleniyu sel'skokhozyaistvennoi ptitsy /Pod redaktsiei V.I. Fisinina [Poultry feeding — guidelines. V.I. Fisinin (ed.)]. Sergiev Posad, 2009 (in Russ.). 
  18. Lie T.F., Yeh H.S., Lu F.Y., Fu C.M. Nanoparticles of chromium picolinate enhance chromium digestibility and absorption. Journal of the Science of Food and Agriculture, 2009, 89(7): 1164-1167 CrossRef
  19. Sahin K., Sahin N., Onderci M., Gursu F., Cikim G. Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. Biol. Trace Elem. Res., 2002, 89(1): 53-64 CrossRef
  20. Batoev Ts.Zh. Sbornik nauchnykh trudov Buryatskogo SKHI (Ulan-Ude), 1971, 25: 122-126 (in Russ.). 
  21. Gaziumarova L.D., Titov L.P., Klyuiko N.L. Bakteriologicheskaya diagnostika disbakterioza kishechnika: instruktsiya po primeneniyu [Bacteriological diagnosis of intestinal dysbiosis]. L.-Minsk, 2010 (in Russ.).  
  22. Sizova E.A., Miroshnikov S.A., Lebedev S.V., Kudasheva A.V., Ryabov N.I. To the development of innovative mineral additives based on alloy of Fe and Co antagonists as an example. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(4): 553-562 CrossRef
  23. Sizova E.A., Miroshnikov S.A., Lebedev S.V., Levakhin Y.I., Babicheva I.A., Kosilov V.I. Comparative tests of various sources of microelements in feeding chicken-broilers. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2018, 53(2): 393-403 CrossRef
  24. Egorov I.A., Petrosyan A., Andrianova E.N. Ptitsevodstvo, 2001, 12: 3-5 (in Russ.).  
  25. Samanta S., Haldar S., Ghosh T.K. Production and carcase traits in broiler chickens given diets supplemented with inorganic trivalent chromium and an organic acid blend. British Poultry Science, 2008, 49(2): 155-163 CrossRef
  26. Sahoo S.K., Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 2003, 8(24): 1112-1120 CrossRef
  27. Davda J., Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. International Journal of Pharmaceutics, 2002, 233(1-2): 51-59 CrossRef
  28. Oberleas D., Harland B.F. Impact of phytic acid on nutrient availability. In: Phytase in animal nutrition and waste management. N.Y., 1996.
  29. Vincent J.B. The biochemistry of chromium. The Journal of Nutrition, 2000, 130(4): 715-718 CrossRef
  30. Clodfelder B.J., Emamaullee J., Hepburn D.D., Chakov N.E., Nettles H.S., Vincent J.B. The trail of chromium (III) in vivo from the blood to the urine: the roles of transferrin and chromodulin. Journal of Biological Inorganic Chemistry, 2001, 6(5-6): 608-617 CrossRef
  31. Striffler J.S., Polansky M.M., Anderson R.A. Overproduction of insulin in the chromium-deficient rat. Metabolism, 1999, 48(8):  1063-1068 CrossRef
  32. Anderson R.A., Kozlovsky A.S. Chromium intake, absorption and excretion of subjects consuming self-selected diets. The American Journal of Clinical Nutrition, 1985, 41(6): 571-577 CrossRef
  33. Rothman S., Liebow C., Isenman L.C. Conservation of digestive enzymes. Physiol. Rev., 2002, 82(1): 1-18 CrossRef
  34. Kawabata A., Matsunami M., Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br. J. Pharmacol., 2008, 153(Suppl. 1): S230-S240 CrossRef
  35. Ransberger K. Teoriya sistemnoi enzimoterapii. Opyt i perspektivy sistemnoi enzimoterapii [Theory of systemic enzymotherapy: experience and prospects]. Krasnoyarsk, 2003 (in Russ.).  
  36. Fisinin V.I., Egorov I.A., Vertiprakhov V.G., Grozina A.A., Lenkova T.N., Manukyan V.A., Egorova T.A. Activity of digestive enzymes in duodenal chymus and blood in broilers of parental lines and the meat cross depending on dietary bioactive additives. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(6): 1226-1233 CrossRef
  37. Ershov D.Yu., Kipper A.I., Borovikova L.N., Garkushina I.S., Matveeva N.A., Pisarev O.A. Sorbtsionnye i khromatograficheskie protsessy, 2011, 6(11): 923-925 (in Russ.).   
  38. Tahami Z., Hosseini S.M., Bashtani M. Effect of organic acids supplementation on some gastrointestinal tract characteristics and small intestine morphology of broiler chickens. Anim. Prod. Res., 2014, 3(3): 1-9.
  39. Dzagurov B.A., Zhuravleva I.O., Ktsoeva Z.A. Izvestiya Gorskogo gosudarstvennogo agrarnogo universiteta, 2013, 3(50): 131-133 (in Russ.).  
  40. Kuvaeva I.B. Obmen veshchestv organizma i kishechnaya microflora [Metabolism and intestinal microflora]. Moscow, 1976 (in Russ.).  
  41. Miller K.P., Wang L., Benicewicz B.C., Decho A.W. Inorganic nanoparticles engineered to attack bacteria. Chem. Soc. Rev., 2015, 44(21): 7787-7807 CrossRef
  42. Arakha M., Pal S., Samantarrai D., Panigrahi T.K., Mallick B.C., Pramanik K., Jha S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 2015, 5: 14813 CrossRef
  43. Feng Z.V., Gunsolus I.L., Qiu T.A., Hurley K.R., Nyberg L.H., Frew H., Torelli M.D. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem. Sci., 2015, 6(9): 5186-5196 CrossRef
  44. Lebedev S.V., Gavrish I.A., Gubaidullina I.Z. Different chrome sources influence on morpho-biochemical indicators and activity of digestive enzymes in Wistar rats. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2019, 54(2): 304-315 CrossRef
  45. Slepicka P., Kasalkova N.S., Siegel J., Kolska Z., Bacakova L., Svorcik V. Nano-structured and functional-ized surfaces for cytocompatibility improvement and bactericidal action. Biotechnology Advances, 2015, 6(33): 1120-1129 CrossRef







Full article PDF (Rus)

Full article PDF (Eng)