doi: 10.15389/agrobiology.2019.4.693eng

UDC: 637:577.161.2:[636.083+637.02

Supported financially by Russian Science Foundation, grant No. 16-16-04047



V.M. Kodentsova1 , D.V. Risnik2, V.K. Mazo3

1Federal Research Centre of Nutrition, Biotechnology and Food Safety, 2/14, Ust’yinskii per., Moscow, 109240 Russia, e-mail (✉ corresponding author);
2Lomonosov Moscow State University, Faculty of Biology, 1-12, Leninskie Gory, Moscow, 119991 Russia, e-mail;
3All-Russian Research Institute of Poultry Processing Industry — Branch of Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, 1, Rzhavki, Solnechnogorsk Region, Moscow Province, 141552 Russia, e-mail

Kodentsova V.M.
Mazo V.K.
Risnik D.V.

Received January 30, 2019


Vitamin D deficiency found in 50-90 % of the adult and children's population in Russia (I.N. Zakharova et al., 2015; V.M. Kodentsova et al., 2017, 2018) and caused by inadequate intake and reduced endogenous synthesis in the skin due to insufficient solar irradiation, is associated with many chronic diseases and makes an important problem (A. Hossein-nezhad et al., 2013). One of the options for biofortification, called “bio-addition”, is based on the ability of living organisms to form vitamin D from endogenous ergosterol by UV irradiation. Ultraviolet irradiation of animals allows minimizing seasonal variations in the concentration of vitamin D in cow’s milk (R.R. Weir et al., 2017). A one-hour exposure of animals for 14-day to insolation at summer noon increased the vitamin D3 content in pork (p < 0.001) to 0.716±0.097 µg/100 g (28.6±3.9 IU/100 g) which significantly exceeded the same indicator in the control animals (0.218±0.024 µg/100 g, or 8.7±1.0 IU per 100 g) (D.E. Larson-Meyer et al., 2017). UV irradiation effectively increased vitamin D level in chicken, from 0.16 to 0.96 µg per 100 g, even at 3000 IU/kg of dietary vitamin D3 (A. Schutkowski et al., 2013).The amount of vitamin D2 in shiitake mushrooms (Lentinula edodes) can achieve, under optimal conditions of UV irradiation, 29.87±1.38 µg per g dry weight. In the USA, Ireland, the Netherlands and Australia, fresh mushrooms are exposed to UV irradiation, which leads to an increase in the vitamin D2 content to 10 µg/100 g wet weight (O. Taofiq et al., 2017; G. Cardwell et al., 2018). This is 50-100 % of the recommended daily consumption of the vitamin. The processing of baking yeast Saccharomyces cerevisiae by ultraviolet irradiation induces the conversion of ergosterol into vitamin D2. The average content of vitamin D2 is 3,065,417 IU/100 g (2,560,000-3,750,000 IU/100 g) or 770 µg/g (640-940 µg/g), which increases its initial concentration (less than 20 IU of vitamin D2/100 g) almost 30-50-fold (EFSA, 2014). The vitamin D2-enriched UV-treated yeast is allowed by The European Food Safety Authority (EFSA) for fortification of yeast-leavened bread, rolls and fine pastry at maximum D2 dose of 5 μg per 100 g of the products. The concentration of vitamins D2 and D3 after UV irradiating of the wheat germ oil (1.6 mm oil layer) was 1035 and 37 ng/g, respectively (A.C. Baur et al., 2016). Similarly, there is an increase of the vitamin D content in eggs after exposure of chickens to UV irradiation or natural sunlight (A. Schutkowski et al., 2013; J. Kühn et al., 2014, 2015). In the conditions of the complete absence of the commercial production of vitamins in our country, bio-addition with vitamin D of chicken meat, eggs and dairy products by UV irradiation of animals, mushrooms, yeast, vegetable oils takes on particular significance.

Keywords: vitamin D, вiofortification, bio-addition, poultry, eggs, cows' milk, mushrooms, vitamin D-enriched UV-treated baker‘s yeast, ultraviolet light irradiation, wheat germ oil.



  1. Kodentsova V.M., Risnik D.V. Voprosy dietologii, 2017, 7(2): 33-40 CrossRef (in Russ.).
  2. Kavtarashvili A.Sh., Mazo V.K., Kodentsova V.M., Risnik D.V., Stefanova I.L. Biofortification of hen eggs: vitamins and carotenoids (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(6): 1094-1104 CrossRef
  3. Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., Arora P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr., 2018, 5: 12 CrossRef
  4. Kodentsova V.M., Mendel' O.I., Khotimchenko S.A., Baturin A.K., Nikityuk D.B., Tutel'yan V.A. Voprosy pitaniya, 2017, 86(2): 47-62 CrossRef (in Russ.).
  5. Göring H. Vitamin D in nature: a product of synthesis and/or degradation of cell membrane components. Biochemistry (Moscow), 2018, 83(11): 1350-1357 CrossRef
  6. Schmid A., Walther B. Natural vitamin D content in animal products. Advances in Nutrition, 2013, 4(4): 453-462 CrossRef
  7. Hughes L.J., Black L.J., Sherriff J.L., Dunlop E., Strobel N., Lucas R.M., Bornman J.F. Vitamin D content of Australian native food plants and Australian-grown edible seaweed. Nutrients, 2018, 10(7): 876 CrossRef
  8. Guo J., Lovegrove J.A., Givens D.I. 25(OH)D3-enriched or fortified foods are more efficient at tackling inadequate vitamin D status than vitamin D3. Proceedings of the Nutrition Society, 2018, 77(3): 282-291 CrossRef
  9. Tripkovic L., Lambert H., Hart K., Smith C.P., Bucca G., Penson S., Chope G., Hypponen E., Berry J., Vieth R., Lanham-New S. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25 hydroxyvitamin D status: a systematic review and meta analysis. The American Journal of Clinical Nutrition, 2012, 95(6): 13571364 CrossRef
  10. Jakobsen J., Andersen E., Christensen T., Andersen R., Bügel S. Vitamin D vitamers affect vitamin D status differently in young healthy males. Nutrients, 2018, 10(1): 2 CrossRef
  11. Wilson L.R., Tripkovic L., Hart K.H., Lanham-New S.A. Vitamin D deficiency as a public health issue: using vitamin D2 or vitamin D3 in future fortification strategies. Proceedings of the Nutrition Society, 2017, 76(3): 392-399 CrossRef
  12. Hossein-nezhad A., Holick M.F. Vitamin D for health: A global perspective. Mayo Clinic Proceedings, 2013, 88(7): 720-755 CrossRef
  13. Kodentsova V.M., Risnik D.V. V sbornike: Ekologiya. Ekonomika. Informatika. Tom 1: Sistemnyi analiz i modelirovanie ekonomicheskikh i ekologicheskikh system [In: Ecology. Economy. Computer science. Vol. 1: System analysis and modeling of economic and environmental systems]. Rostov-na-Donu, 2016: 486-498 (in Russ.).
  14. Zakharova I.N., Mal'tsev S.V., Borovik T.E., Yatsyk G.V., Malyavskaya S.I., Vakhlova I.V., Shumatova T.A., Romantsova E.B., Romanyuk F.P., Klimov L.Ya., Pirozhkova N.I., Kolesnikova S.M., Kur'yaninova V.A., Tvorogova T.M., Vasil'eva S.V., Mozzhukhina M.V., Evseeva E.A. Pediatriya. Zhurnal im. G.N. Speranskogo, 2015, 94(1): 62-67 (in Russ.).
  15. Wacker M., Holick M.F. Vitamin D — effects on skeletal and extraskeletal health and the need for supplementation. Nutrients, 2013, 5(1): 111-148 CrossRef
  16. Drapkina O.M., Shepel' R.N., Fomin V.V., Svistunov A.A. Terapevticheskii arkhiv, 2018, 90(1): 69-75 (in Russ.).
  17. Podzolkov V.I., Pokrovskaya A.E., Panasenko O.I. Terapevticheskii arkhiv, 2018, 90(9): 144-150 (in Russ.).
  18. Kalinchenko S.Yu., Korotkova N.A. Voprosy dietologii, 2018, 8(2): 32-37 CrossRef (in Russ.).
  19. Zaidieva Ya.Z. Sovremennaya ginekologiya, 2018, 1(6): 24-33 (in Russ.).
  20. Kodentsova V.M., Beketova N.A., Nikityuk D.B., Tutel'yan V.A. Profilakticheskaya meditsina, 2018, 21(4): 32-37 CrossRef (in Russ.).
  21. Zakharova I.N., Tvorogova T.M., Gromova O.A., Evseeva E.A., Lazareva S.I., Maikova I.D., Sugyan N.G. Pediatricheskaya farmakologiya, 2015, 12(5): 528-531 CrossRef (in Russ.).
  22. Kodentsova V.M., Vrzhesinskaya O.A. Voprosy pitaniya, 2016, 85(2): 31-50 (in Russ.).
  23. Itkonen S.T., Erkkola M., Lamberg-Allardt C.J.E. Vitamin D fortification of fluid milk products and their contribution to vitamin d intake and vitamin D status in observational studies — a review. Nutrients, 2018, 10(8): 1054 CrossRef
  24. Hiligsmann M., Burlet N., Fardellone P., Al-Daghri N., Reginster J.-Y. Public health impact and economic evaluation of vitamin D-fortified dairy products for fracture prevention in France. Osteoporosis International, 2017, 28(3): 833-840 CrossRef
  25. Raulio S., Erlund I., Männistö S., Sarlio-Lähteenkorva S., Sundvall J., Tapanainen H., Virtanen S.M. Successful nutrition policy: improvement of vitamin D intake and status in Finnish adults over the last decade. European Journal of Public Health, 2016, 27(2): 268-273 CrossRef
  26. Jääskeläinen T., Itkonen S.T., Lundqvist A., Erkkola M., Koskela T., Lakkala K., Dowling K.G., Hull G.L., Kröger H., Karppinen J., Kyllönen E., Härkänen T., Cashman K.D., Männistö S., Lamberg-Allardt C. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. The American Journal of Clinical Nutrition, 2017, 105(6): 1512-1520 CrossRef
  27. Pilz S., März W., Cashman K.D., Kiely M.E., Whiting S.J., Holick M.F., Grant W.B., Pludowski P., Hiligsmann M., Trummer C., Schwetz V., Lerchbaum E., Pandis M., Tomaschitz A., Grübler M.R., Gaksch M., Verheyen N., Hollis B.W., Rejnmark L., Karras S.N., Hahn A., Bischoff-Ferrari H.A., Reichrath J., Jorde R., Elmadfa I., Vieth R., Scragg R., Calvo M.S., van Schoor N.M., Bouillon R., Lips P., Itkonen S.T., Martineau A.R., Lamberg-Allardt C., Zittermann A. Rationale and plan for vitamin D food fortification: a review and guidance paper. Front. Endocrinol., 2018, 9: 373 CrossRef
  28. Hymøller L., Jensen S.K. Plasma transport of ergocalciferol and cholecalciferol and their 25-hydroxylated metabolites in dairy cows. Domestic Animal Endocrinology, 2017, 59: 44-52 CrossRef
  29. Hymøller L., Jensen S.K. Vitamin D3 synthesis in the entire skin surface of dairy cows despite hair coverage. Journal of Dairy Science, 2010, 93(5): 2025-2029 CrossRef
  30. Weir R.R., Strain J.J., Johnston M., Lowis C., Fearon A.M., Stewart S., Pourshahidi L.K. Environmental and genetic factors influence the vitamin D content of cows’ milk. Proceedings of the Nutrition Society, 2017, 76(1): 76-82 CrossRef
  31. Yue Y., Hymøller L., Jensen S.K., Lauridsen C. Effect of vitamin D treatments on plasma metabolism and immune parameters of healthy dairy cows. Archives of Animal Nutrition, 2018, 72(3): 205-220 CrossRef
  32. Jakobsen J., Jensen S.K., Hymøller L., Andersen E.W., Kaas P., Burild A., Jäpelt R.B. Short communication: artificial ultraviolet B light exposure increases vitamin D levels in cow plasma and milk. Journal of Dairy Science, 2015, 98(9): 6492-6498 CrossRef
  33. Barnkob L.L., Argyraki A., Petersen P.M., Jakobsen J. Investigation of the effect of UV-LED exposure conditions on the production of vitamin D in pig skin. Food Chemistry, 2016, 212: 386-391 CrossRef
  34. Larson-Meyer D.E., Ingold B.C., Fensterseifer S.R., Austin K.J., Wechsler P.J., Hollis B.W., Makowski A.J., Alexander B.M. Sun exposure in pigs increases the vitamin D nutritional quality of pork. PloS ONE, 2017, 12(11): e0187877 CrossRef
  35. Alexander B.M., Ingold B.C., Young J.L., Fensterseifer S.R., Wechsler P.J., Austin K.J., Larson-Meyer D.E. Sunlight exposure increases vitamin D sufficiency in growing pigs fed a diet formulated to exceed requirements. Domestic Animal Endocrinology, 2017, 59: 37-43 CrossRef
  36. Burild A., Frandsen H.L., Poulsen M., Jakobsen J. Tissue content of vitamin D3 and 25-hydroxy vitamin D3 in minipigs after cutaneous synthesis, supplementation and deprivation of vitamin D3. Steroids, 2015, 98: 72-79 CrossRef
  37. Casas E., Lippolis J.D., Kuehn L.A., Reinhardt T.A. Seasonal variation in vitamin D status of beef cattle reared in the central United States. Domestic Animal Endocrinology, 2015, 52: 71-74 CrossRef
  38. Schutkowski A., Krämer J., Kluge H., Hirche F., Krombholz A., Theumer T., Stangl G.I. UVB exposure of farm animals: study on a food-based strategy to bridge the gap between current vitamin D intakes and dietary targets. PloS ONE, 2013, 8(7): e69418 CrossRef
  39. Taofiq O., Fernandes Â., Barros L., Barreiro M.F., Ferreira I.C. UV-irradiated mushrooms as a source of vitamin D2: a review. Trends in Food Science & Technology, 2017, 70: 82-94 CrossRef
  40. Edward T.L., Kirui M.S.K., Omolo J.O., Ngumbu R.G., Odhiambo P.M. Change in concentration of vitamin D 2 in oyster mushrooms exposed to 254nm and 365nm UV-light during growth. International Journal of Biochemistry and Biophysics, 2015, 3(1): 1-5.
  41. Lee N.K., Aan B.Y. Optimization of ergosterol to vitamin D2 synthesis in Agaricus bisporus powder using ultraviolet-B radiation. Food Science and Biotechnology, 2016, 25(6): 1627-1631 CrossRef
  42. Slawinska A., Fornal E., Radzki W., Jablonska-Rys E., Parfieniuk E. Vitamin D2 stability during the refrigerated storage of ultraviolet B-treated cultivated culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 2017, 19(3): 249-255 CrossRef
  43. Cardwell G., Bornman J.F., James A.P., Black L.J. A review of mushrooms as a potential source of dietary vitamin D. Nutrients, 2018, 10(10): E1498 CrossRef
  44. Cashman K.D., Kiely M., Seamans K.M., Urbain P. Effect of ultraviolet light-exposed mushrooms on vitamin D status: liquid chromatography-tandem mass spectrometry reanalysis of biobanked sera from a randomized controlled trial and a systematic review plus meta-analysis. The Journal of Nutrition, 2016, 146(3): 565-75 CrossRef
  45. Won D.J., Kim S.Y., Jang C.H., Lee J.S., Ko J.A., Park H.J. Optimization of UV irradiation conditions for the vitamin D2-fortified shiitake mushroom (Lentinula edodes) using response surface methodology. Food Science and Biotechnology, 2017, 27(2): 417-424 CrossRef
  46. Chien R.C., Yang S.C., Lin L.M., Mau J.L. Anti‐inflammatory and antioxidant properties of pulsed light irradiated Lentinula edodes. Journal of Food Processing and Preservation, 2017, 41(4): e13045 CrossRef
  47. Morales D., Gil-Ramirez A., Smiderle F.R., Piris A.J., Ruiz-Rodriguez A., Soler-Rivas C. Vitamin D-enriched extracts obtained from shiitake mushrooms (Lentinula edodes) by supercritical fluid extraction and UV-irradiation. Innovative Food Science & Emerging Technologies, 2017, 41: 330-336 CrossRef
  48. Nolle N., Argyropoulos D., Ambacher S., Müller J., Biesalski H.K. Vitamin D2 enrichment in mushrooms by natural or artificial UV-light during drying. LWT - Food Science and Technology, 2017, 85(part B): 400-404 CrossRef
  49. Calvo M.S., Whiting S.J. Survey of current vitamin D food fortification practices in the United States and Canada. The Journal of Steroid Biochemistry and Molecular Biology, 2013, 136: 211-213 CrossRef
  50. Khimicheskii sostav rossiiskikh pishchevykh produktov /Pod redaktsiei I.M. Skurikhina, V.A. Tutel'yana [Сhemical composition of foodstuffs produced in Russia. I.M. Skurikhin, V.A. Tutel'yan (eds.)]. Moscow, 2002 (in Russ.).
  51. Laskowska-Klita T., Chełchowska M., Ambroszkiewicz J., Gajewska J., Klemarczyk W. The effect of vegetarian diet on selected essential nutrients in children. Medycyna Wieku Rozwojowego, 2011, 15(3): 318-325.
  52. Elorinne A.L., Alfthan G., Erlund I., Kivimäki H., Paju A., Salminen I., Turpeinen U., Voutilainen S., Laakso J. Food and nutrient intake and nutritional status of Finnish vegans and non-vegetarians. PloSONE, 2016, 11(2): e0148235 CrossRef
  53. Gorbachev D.O., Sazonova O.V., Gil'miyarova F.N., Gusyakova O.A., Myakisheva Yu.V., Beketova N.A., Kodentsova V.M., Vrzhesinskaya O.A., Gorbacheva I.V., Gavryushin M.Yu. Profilakticheskaya meditsina, 2018, 21(3): 51-56 CrossRef (in Russ.).
  54. Ložnjak P., Jakobsen J. Stability of vitamin D3 and vitamin D2 in oil, fish and mushrooms after household cooking. Food Chemistry, 2018, 254: 144-149 CrossRef
  55. Jasinghe V.J., Perera C.O., Barlow P.J. Bioavailability of vitamin D2 from irradiated mushrooms: an in vivo study. British Journal of Nutrition, 2005, 93(6): 951-955 CrossRef
  56. Stephensen C.B., Zerofsky M., Burnett D.J., Lin Y.P., Hammock B.D., Hall L.M., McHugh T. Ergocalciferol from mushrooms or supplements consumed with a standard meal increases 25-hydroxyergocalciferol but decreases 25-hydroxycholecalciferol in the serum of healthy adults. The Journal of Nutrition, 2012, 142(7): 1246-1252 CrossRef
  57. Keegan R.-J.H., Lu Z., Bogusz J.M., Williams J.E., Holick M.F. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermato-Endocrinology, 2013, 5(1): 165-176 CrossRef
  58. Duffy S.K., O'Doherty J.V., Rajauria G., Clarke L.C., Hayes A., Dowling K.G., O’Grady M.N., Kerry J.P., Jakobsen J., Cashman K.D., Kelly A.K. Vitamin D-biofortified beef: A comparison of cholecalciferol with synthetic versus UVB-mushroom-derived ergosterol as feed source. Food Chemistry, 2018, 256: 18-24 CrossRef
  59. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on the safety of vitamin D-enriched UV-treated baker‘s yeast. EFSA Journal, 2014, 12(1): 3520 CrossRef
  60. Hohman E.E., Martin B.R., Lachcik P.J., Gordon D.T, Fleet J.C., Weaver C.M. Bioavailability and efficacy of vitamin D2 from UV-irradiated yeast in growing, vitamin D-deficient rats. J. Agric. Food Chem., 2011, 59(6): 2341-2346 CrossRef
  61. Itkonen S.T., Pajula E.T., Dowling K.G., Hull G.L., Cashman K.D., Lamberg-Allardt C.J. Poor bioavailability of vitamin D2 from ultraviolet-irradiated D2-rich yeast in rats. Nutrition Research, 2018, 59: 36-43 CrossRef
  62. Health Canada. Department of health, food and drugs regulation — Amendments. Canada Gazette Part I, 19 February, 2011: 439-440.
  63. FDA (Food and Drug Administration). Food and drug administration, Department of health and human services. Food additives permitted for direct addition to food for human consumption; vitamin D2 baker’s yeast. Federal Register 08/29/2012. Available Accessed 12.08.2019.
  64. Shurson G.C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology, 2018, 235: 60-76 CrossRef
  65. Baur A.C., Brandsch C., Konig B., Hirche F., Stangl G.I. Plant oils as potential sources of vitamin D. Frontiers in Nutrition, 2016, 12(3): 29 CrossRef
  66. Kühn J., Schutkowski A., Hirche F., Baur A.C., Mielenz N., Stangl G.I. Non-linear increase of vitamin D content in eggs from chicks treated with increasing exposure times of ultraviolet light. The Journal of Steroid Biochemistry and Molecular Biology, 2015, 148: 7-13 CrossRef
  67. Kühn J., Schutkowski A., Kluge H., Hirche F., Stangl G.I. Free-range farming: a natural alternative to produce vitamin D-enriched eggs. Nutrition, 2014, 30(4): 481-484 CrossRef
  68. Richard C., Cristall L., Fleming E., Lewis E.D., Ricupero M., Jacobs R.L., Field C.J. Impact of egg consumption on cardiovascular risk factors in individuals with type 2 diabetes and at risk for developing diabetes: a systematic review of randomized nutritional intervention studies. Canadian Journal of Diabetes, 2017, 41(4): 453-463 CrossRef
  69. Díez-Espino J., Basterra-Gortari F.J., Salas-Salvadó J., Buil-Cosiales P., Corella D., Schröder H., Estruch R., Ros E., Gómez-Gracia E., Arós F., Fiol M., Lapetra J., Serra-Majem L., Pintó X., Babio N., Quiles L., Fito M., Marti A., Toledo E. Egg consumption and cardiovascular disease according to diabetic status: The PREDIMED study. Clinical Nutrition, 2017, 36(4): 1015-1021 CrossRef
  70. Kim J.E., Ferruzzi M.G., Campbell W.W. Egg consumption increases vitamin E absorption from co-consumed raw mixed vegetables in healthy young men. The Journal of Nutrition, 2016, 146(11): 2199-2205 CrossRef
  71. Kim J.E., Gordon S.L., Ferruzzi M.G., Campbell W.W. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables. The American Journal of Clinical Nutrition, 2015, 102(1): 75-83 CrossRef
  72. Kodentsova V.M., Vrzhesinskaya O.A., Risnik D.V., Nikityuk D.B., Tutel'yan V.A. Voprosy pitaniya, 2017, 86(4): 113-124 (in Russ.).
  73. Tripkovic L., Wilson L.R., Hart K., Johnsen S., de Lusignan S., Smith C.P. Hypponen E. Daily supplementation with 15 μg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: a 12-wk randomized, placebo-controlled food-fortification trial. The American Journal of Clinical Nutrition, 2017, 106(2): 481-490 CrossRef.







Full article PDF (Rus)

Full article PDF (Eng)