doi: 10.15389/agrobiology.2019.4.655eng

UDC: 636.033/.034:636.082/.083:575.1



V.A. Bekenev

Siberian Federal Scientific Center of Agro-BioTechnologies RAS, Siberian Research and Technological Institute of Animal Husbandry, PO box 463, r.p. Krasnoobsk, Novosibirskii Region, Novosibirsk Province, 630501 Russia, e-mail (✉ corresponding author),

Bekenev V.A.

Received July 23, 2018


Lengthening the terms of the productive use of animals is the most important problem in the cultivation of dairy and dairy and beef cattle, pig breeding and other branches of animal husbandry. The aim of this work was to review the influence of various genotypic and paratypic factors on life expectancy, productive longevity of farm animals, as well as analysis of studies to find modern ways of predicting and prolonging them. It was shown that with an increase in milk yield for lactation from 2500-3000 kg to 10000 kg of milk, the duration of productive use of cows decreases from 7-9 to 2-3 lactations, which increases the cost of milk production (I.I. Klimenok et al., 2001; J.R. Wright et al., 2016 et al.). An increase in milk productivity is accompanied by a decrease in reproductive function: the service period is prolonged, animal fertility decreases due to stress resulting from activation of the lactational dominant (A.I. Abilov et al., 2013; Y.S. Schuermann et al., 2016, etc.) To improve reproductive functions, duration of use, it is recommended to use special mineral-vitamin supplements (L.V. Romanenko et al., 2014; B. Close, 2007). Animal welfare is considered as an indicator of the stability of the system and is considered economically profitable (P.A. Oltenacu et al., 2010; L.V. Efimova et al., 2017). The duration of the productive use of sows, depending on the number of farrowing during use, fertility, survival of piglets and other factors is 3-4 farrowing instead of 4.5 in accordance with the accepted norm, which also affects economic indicators (M.D. Hoge et al., 2011). The indicators of heritability of signs of longevity in cattle and pigs are given (L. Canario et al., 2006), various feeding methods, breeding techniques, including the use of genetic markers to lengthen the economic use of animals. (C.N. Lopes et al., 2011; A.I. Sironen et al., 2010 et al.). Molecular markers related to the reproductive characteristics and duration of use of animals are given, which should also be used in genomic selection (N.S. Yudin et al., 2015; Q. Zhang et al., 2017). The theoretical provisions on the causes of aging, the influence of various stressors arising as a result of peroxide and antioxidant processes in the body are considered (E.S. Bauer, 1935; V.L. Voeikov, 2002).The role of reactive oxygen species, free radicals, and antioxidants of different nature on the reproductive function and viability of animals under stressful effects of different strengths is discussed (D.D. Boler et al., 2012; M. Sajeda Eidan, 2016). Thus, to increase the duration of the use and longevity of farm animals, combined with high productivity and adaptability to various, including adverse environmental factors, methods should be used that add up to several positions. It is necessary to develop and use proper feeding techniques that optimize the energy balance during all periods of the reproductive cycle, create favorable conditions for keeping animals, providing for exposure to certain stimulating factors that increase the biophysical potential of the body, affecting the functioning of biochemical systems. One should use the latest methods for predicting the level of free-radical oxidation of animal tissue lipids, which affect the manifestation of oestrus, oocyte and sperm viability, and the use of antioxidants with feed additives to balance oxidative and antioxidative processes. One more approach is to create herds (breeds, types) of animals with a high genetic potential for productivity and stress resistance using the most effective selection methods, genetic markers, genetic and mathematical models, and genetic engineering methods.

Keywords: productive longevity, milk yield, stress, reproductive function, heritability, genetic markers, free radicals.



  1. Klimenok I.I., Rogal'skii G.L., Maile A.V. Sibirskii vestnik sel'skokhozyaistvennoi nauki, 2001, 3-4: 75-80 (in Russ.).
  2. Pavlyukhin A.M., Starodumov I.M., Tunikov G.M. Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii molodykh uchenykh i spetsialistov «Vklad molodykh uchenykh v razvitie agrarnoi nauki XXI veka» [Proc. Int. Conf. of young scientists «Contribution of young scientists to the development of agricultural science of the XXI century»]. Ryazan', 2004: 141-144 (in Russ.). 
  3. Sel'tsov V.I., Molchanova N.N. Zootekhniya, 2013, 9: 2-4 (in Russ.). 
  4. Strizhakov V.I. V sbornike: Proizvodstvo produktov zhivotnovodstva v Zapadnoi Sibiri [In: Livestock production in Western Siberia]. Omsk, 1999: 27-28 (in Russ.).
  5. Wright J.R., VanRaden P.M. Genetic evaluation of dairy cow livability. Journal of Animal Science, 2016, 94(suppl. 5): 178-178 CrossRef
  6. Hare E., Norman H.D., Wright J.R. Survival rates and productive herd life of dairy cattle in the United States. Journal of Dairy Science, 2006, 89(9): 3713-3720 CrossRef
  7. Brickell J.S, Wathes D.C. A descriptive study of the survival of Holstein-Friesian heifers through to third calving on English dairy farms. Journal of Dairy Science, 2011, 94(4): 1831-1838 CrossRef
  8. Fedoseeva N.A., Kiselev V.L., Novikova N.N., Ivanova N.I., Gromov L.S. Zootekhniya, 2016, 10: 29-31 (in Russ.).
  9. Shteiman S.I. Kak sozdano rekordnoe karavaevskoe stado [How the Karavaevo's herd of record milking cows was created]. Moscow, 1948 (in Russ.).
  10. López de Maturana E., Ugarte E., González-Recio O. Impact of calving ease on functional longevity and herd amortization costs in Basque Holsteins using survival analysis. Journal of Dairy Science, 2007, 90(9): 4451-4457 CrossRef
  11. Le Cozler Y., Lollivier V., Lacasse P., Disenhaus C. Rearing strategy and optimizing first-calving targets in dairy heifers: a review. Animal, 2008, 2(9): 1393-1404 CrossRef
  12. Sewalem A., Miglior F., Kistemaker G.J., Sullivan P., Van Doormaal B.J. Relationship between reproduction traits and functional longevity in canadian dairy cattle. Journal of Dairy Science, 2008, 91(4): 1660-1668 CrossRef
  13. Bell M.J., Wall E., Russell G., Roberts D.J., Simm G. Risk factors for culling in Holstein-Friesian dairy cows. Veterinary Record, 2010, 167: 238-240 CrossRef
  14. Sawa A., Bogucki M. Longevity of cows depending on their first lactation yield and herd production level. Annals of Animal Science, 2017, 17(4): 1171-1183 CrossRef
  15. Jaśkowski J.M., Olechnowicz J., Nowak W. Several reasons for decreasing fertility in dairy cows. Med. Weter., 2006, 62: 385-389.
  16. Sewalem A., Miglior F., Kistemake G.J. Analysis of the relationship between workability traits and functional longevity in Canadian dairy breeds. Journal of Dairy Science, 2010, 93(9): 4359-4365 CrossRef
  17. Khmel'nichii L.M., Vecherka V.V. Genetika i razvedenie zhivotnykh, 2015, 2: 36-39 (in Russ.).
  18. Zavadilová L., E. Němcová, M. Štípková. Effect of type traits on functional longevity of Czech Holstein cows estimated from a Cox proportional hazards model. Journal of Dairy Science, 2011, 94(8): 4090-4099 CrossRef
  19. Abilov A.I., Vinogradova I.V., Zhavoronkova N.V., Vinogradov V.N. Zootekhniya, 2015, 11: 21-25 (in Russ.).
  20. Sharkaeva G.A., Sharkaev V.I. Zootekhniya, 2016, 2: 20-21 (in Russ.).
  21. Schuermann Y., St-Yves A., Dicks N., Bohrer R. C., Mondadori R., Welsford G., Boyer V., Taibi M., Higginson V., Hartley S., Madogwe E., Bordignon V., Baurhoo B., Duggavathi R. The transition cow: may the odds be ever in her favor. Journal of Animal Science, 2016, 94(suppl. 5): 234-235 CrossRef
  22. Oltenacu P.A., Broom D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Animal Welfare, 2010, 19: 39-49.
  23. Efimova L.V., Zaznobina T.V. Vestnik APK Stavropol'ya, 2017, 4(28): 58-63 (in Russ.).
  24. Koketsu Y. Longevity and efficiency associated with age structures of female pigs and herd management in commercial breeding herds. Journal of Animal Science, 2007, 85(4): 1086-1091 CrossRef
  25. Romanenko L.V., Volgin V.I., Fedorova Z.L. Molochnoe i myasnoe skotovodstvo, 2014, 6: 34-36 (in Russ.).
  26. Volgin V.I., Bibikova A.S., Romanenko L.V., Morozov N.N. V sbornike nauchnykh trudov: Selektsionno-geneticheskie metody povysheniya produktivnosti sel'skokhozyaistvennykh zhivotnykh [In: Genetics and breeding methods to increase the productivity of farm animals]. St. Petersburg, 2004: 88-92 (in Russ.).
  27. Bisinotto R.S., Greco L.F., Ribeiro E.S., Martinez N., Lima F.S., Staples C.R., Thatcher W.W., Santos1 J.E.P. Influences of nutrition and metabolism on fertility of dairy cows. Animal Reproduction, 2012, 9(3): 260-272.
  28. Lashkina T. Zhivotnovodstvo Rossii, 2006, 10: 54-55 (in Russ.).
  29. Lopes C.N., Cooke R.F., Reis M.M., Peres R.F.G., Vasconcelos J.L.M. Strategic supplementation of calcium salts of polyunsaturated fatty acids to enhance reproductive performance of Bos indicus beef cows. Journal of Animal Science, 2011, 89(10): 3116-3124 CrossRef
  30. Hoge M.D., Bates R.O. Developmental factors that influence sow longevity. Journal of Animal Science, 2011, 89(4): 1238-1245 CrossRef
  31. Balogh P., Kapelański W., Jankowiak H., Nagy L., Kovacs S., Huzsvai L., Popp J., Posta J., Soltesz A. The productive lifetime of sows on two farms from the aspect of reasons for culling. Annals of Animal Science,2015, 15(3): 747-758 CrossRef
  32. Bekenev V.A. Tekhnologiya razvedeniya i soderzhaniya svinei [Technology for pig breeding and keeping]. St. Petersburg, 2012 (in Russ.).  
  33. Gill P. Nutritional management of the gilt for lifetime productivity — feeding for fitness or fatness? Proc. London Swine Conference. London, 2007: 83-99.
  34. Geisert D., Schmitt R.A.M. Early embryonic survival in the pig: san it be improved? Journal of Animal Science,2002, 80: 54-65.
  35. Klouz B. Promyshlennoe i plemennoe svinovodstvo, 2007, 3: 18-20 (in Russ.).
  36. Klouz B. Promyshlennoe i plemennoe svinovodstvo, 2007, 2: 32 (in Russ.).
  37. Pritchard T., Coffey M., Mrode R., Wall E. Understanding the genetics of survival in dairy cows. Journal of Dairy Science, 2013, 96(5): 3296 CrossRef
  38. Rogers P.L., Gaskins C.T., Johnson K.A., MacNeil M.D. Evaluating longevity of composite beef females using survival analysis techniques. Journal of Animal Science, 2004, 82(3): 860-866 CrossRef
  39. Nikkilä M.T., Stalder K.J., Mote B.E., Rothschild M.F., Gunsett F.C., Johnson A.K., Karriker L.A., Boggess M.V., Serenius T.V. Genetic associations for gilt growth, compositional, and structural soundness traits with sow longevity and lifetime reproductive performance. Journal of Animal Science, 2013, 91(4): 1570-1579 CrossRef
  40. Canario L., Cantoni E., Le Bihan E., Caritez J.C., Billon Y., Bidanel J.P., Foulley J.L. Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. Journal of Animal Science, 2006, 84(12): 3185-3196 CrossRef
  41. Green R.D. ASAS centennial paper: future needs in animal breeding and genetics. Journal of Animal Science, 2009, 87(2): 793-800 CrossRef
  42. Kaupe B., Brandt H., Prinzenberg E.-M., Erhardt G. Joint analysis of the influence of CYP11B1 and DGAT1 genetic variation on milk production, somatic cell score, conformation, reproduction, and productive lifespan in German Holstein cattle. Journal of Animal Science, 2007, 85(1): 11-21 CrossRef
  43. Engle B.N., Herring A.D., Sawyer J.E., Riley D.G., Sanders J.O., Gill C.A. Genome-wide association study for stayability measures in Nellore-Angus crossbred cows. Journal of Animal Science, 2016, 94(supp. 4): 142 CrossRef
  44. Nayeri S., Sargolzaei M., Abo-Ismail M.K., Miller S., Schenkel F., Moore S.S., Stothard P. Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. Journal of Dairy Science, 2016, 100(2): 1246-1258 CrossRef
  45. Zhang Q., Guldbrandtsen B., Thomasen J.R., Lund M.S., Sahana G. Genome-wide association study for longevity with whole-genome sequencing in 3 cattle breeds. Journal of Dairy Science, 2016, 99(9): 7289-7298 CrossRef
  46. Yudin N.S., Voevoda M.I.Genetika, 2015, 51(5): 600-612 CrossRef (in Russ.).
  47. van der Steen H.A.M., Prall G.F.W., Plastow G.S. Application of genomics to the pork industry. Journal of Animal Science, 2005, 83(suppl 13): E1-E8 CrossRef
  48. Cleveland M.A., Forni S., Garrick D.J., Deeb N. Prediction of genomic breeding values in a commercial pig population. Proc. 9th World Congress on Genetics Applied to Livestock Production. Leipzig, 2010: 0266.
  49. Rempel L.A., Nonneman D.J., Wise T.H., Erkens T., Peelman L.J., Rohrer G.A. Association analyses of candidate single nucleotide polymorphisms on reproductive traits in swine. Journal of Animal Science, 2010, 88(1): 1-15 CrossRef
  50. Onteru S.K., Fan B., Nikkilä M.T., Garrick D.J., Stalder K.J., Rothschild M.F. Whole-genome association analyses for lifetime reproductive traits in the pig. Journal of Animal Science, 2011, 89(4): 988-995 CrossRef
  51. Serenius T., Stalder K.J. Selection for sow longevity. Journal of Animal Science, 2006, 84(suppl. 13): E166-E171 CrossRef
  52. Sironen A.I., Uimari P., Serenius T., Mote B., Rothschild M., Vilkki J. Effect of polymorphisms in candidate genes on reproduction traits in Finnish pig populations. Journal of Animal Science, 2010, 88(3): 821-827 CrossRef
  53. Thekkoot D.M., Young J.M., Rothschild M.F. Dekkers J.C.M. Genomewide association analysis of sow lactation performance traits in lines of Yorkshire pigs divergently selected for residual feed intake during grow finishphase. Journal of Animal Science, 2016, 94(6): 2317-2331 CrossRef
  54. Rohrer G.A., Cross A.J., Lents C.A., Miles J.R., Nonneman D.J., Rempel L.A. Genetic improvement of sow lifetime productivity. Journal of Animal Science, 2017, 95(suppl. 2): 11-12 CrossRef
  55. Mote B.E., Koehler K.J., Mabry J.W., Stalder K.J., Rothschild M.F. Identification of genetic markers for productive life in commercial sows. Journal of Animal Science, 2009, 87(7): 2187-2195 CrossRef
  56. Voeikov V.L. Uspekhi gerontologii, 2002, 9: 54-66 (in Russ.).  
  57. Wnuk M., Bugno-Poniewierska M., Lewińska A., Oklejewicz V., Ząbek T., Słota E. Aging process in chromatin of animals. Annals of Animal Science, 2012, 12(3): 301-309 CrossRef
  58. Gilley D., Herbert B.S., Huda N., Tanaka H., Reed T. Factors impacting human telomere homeostasis and age-related disease. Mechanisms of Ageing and Development, 2008, 129(1-2): 27-34 CrossRef
  59. Borisov V.I., Kozhevnikov B.C., Senyukov V.V., Sizikov A.E., Konenkova L.P., Gertsog O.A., Kozlov V.A. Meditsinskaya immunologiya, 2006, 1: 87-90 CrossRef (in Russ.).  
  60. Boler D.D., Fernández-Dueñas D.M., Kutzler L.W., Zhao J., Harrell R.J., Campion D.R., McKeith F.K., Killefer J., Dilger A.C. Effects of oxidized corn oil and a synthetic antioxidant blend on performance, oxidative status of tissues, and fresh meat quality in finishing barrows. Journal of Animal Science, 2012, 90(13): 5159-5169 CrossRef
  61. Cambi M., Tamburrino L., Marchiani S., Olivito B., Azzari C., Forti G., Baldi E., Muratori M. Development of a specific method to evaluate 8-hydroxy,2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction, 2013, 145(3): 227-235 CrossRef
  62. Lian H.Y., Gao Y., Jiao G.Z., Sun M.J., Wu X.F., Wang T.Y., Li H., Tan J.H. Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress-induced oxidative stress on mouse oocytes. Reproduction, 2013, 146(6): 559-568 CrossRef
  63. Ribou A.C., Reinhardt K. Reduced metabolic rate and oxygen radicals production in stored insect sperm. Proceedings the Royal Society B. Biological Science, 2012, 279(1736): 2196-2203CrossRef
  64. Sullivan R., Saez F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction, 2013, 146(1): R21-R35 CrossRef
  65. Chabory E., Damon C., Lenoir A., Henry-Berger J., Vernet P., Cadet R., Saez F., Drevet J.R. Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. Journal of Animal Science, 2010, 88(4): 1321-1331 CrossRef
  66. Wu Q.Q., Lam C., Poljak D., Van Deventer G.M., Bradley C.P., Combelles C.M.H. Characterization of the catalase and glutathione peroxidase-1 antioxidant system during bovine folliculogenesis. Biology of Reproduction, 2009, 81(suppl. 1): 581 CrossRef
  67. Eidan S.M. Effect on post-cryopreserved semen characteristics of Holstein bulls of adding combinations of vitamin C and either catalase or reduced glutathione to Tris extender. Animal Reproduction Science, 2016, 167: 1-7 CrossRef
  68. Polushin Yu.S., Levshankov A.I., Lakhin R.E., Pashchinin A.N., Bezrukova E.V., Piskunovich A.L., Kostyuchek D.F., Belozerova A.K., Gaidukov S.N., Shapkaits V.A., Belozerova L.A., Krasnov N.V. Nauchnoe priborostroenie, 2013, 23(3): 5-12 (in Russ.).  
  69. Coy P., Grullon L., Canovas S., Romar R., Matas C., Aviles M. Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction, 2008, 135(1): 19-27 CrossRef
  70. Leahy T., Gadella B.M. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction, 2011,142(6): 759-778 CrossRef
  71. Aitken R.J., Curry B.J. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxidants & Redox Signaling, 2011, 14(3): 367-381 CrossRef
  72. Bauer E.S. Teoreticheskaya biologiya [Theoretical biology]. Moscow-Leningrad, 1935 (in Russ.).  







Full article PDF (Rus)