doi: 10.15389/agrobiology.2018.4.659eng

UDC 636.012:575



V.I. Glazko

Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russiae-mail (✉ corresponding author)

Glazko V.I.
The author declares no conflict of interests

Received April 25, 2018


Domestication is considered as a model of microevolution, problems and traits of domestication in animal species that distinguish them from closely related wild species are discussed. Data on different levels of "signature" of domestication, such as genomic, gene, protein, metabolomic, in the key genes of formation of economically valuable traits are presented. It is noted that the main differences of domesticated species from closely related wild ones are relatively high variability not only at the phenotypic level, manifested in large numbers of breeds and wide areas, but also in the population-genetic heterogenisity, as well as functional groups of genes involved in variability. The accumulated data suggest that there is a “subgenome”, the increased variability of which is a source of genetic heterogeneity of domesticated animals, necessary for effective selection on economically valuable traits and adaptive potential. Literary data on the comparative analysis of the differences between SNP and CNV markers indicate that, mostly in genomic regions, in which are localized differentiating these species types the SNP and CNV markers, localized the genes which are associated with the development of the nervous and immune systems, as well as the characteristics of animal productivity in agricultural species, and involved in these processes specific genes varies depending on species, that is, similar phenotypic solutions are achieved with the involvement of different genetic systems (F.J. Alberto et al. 2018). It is known that almost half of mammalian genomes are engaged in retrotransposons (E.V. Koonin, 2016). The comparative analysis of domesticated and closely related wild species revealed differences in the relatively high density in the domesticated species the distribution of DNA fragments flanked by inverted sequences of tandem and dispersed repeats. It is proved that there is a certain contribution of transposing elements associated with a wide range of retroviral infections in the increased genetic variability of domesticated species, which can explain the unique genetic and phenotypic variability of domesticated animals.

Keywords: domestication, signature of domestication, microsatellites, dispersed repeats, endogenous retroviruses.


Full article (Rus)

Full article (Eng)



  1. Bogolyubskii S.N. Proiskhozhdenie i preobrazovanie domashnikh zhivotnykh [The origin and transformation of domestic animals]. Moscow, 1959 (in Russ.).  
  2. Wang K., Wu P., Yang Q., Chen D., Zhou J., Jiang A., Ma J., Tang Q., Xiao W., Jiang Y., Zhu L., Li X., Tang G. Detection of selection signatures in Chinese Landrace and Yorkshire pigs based on genotyping-by-sequencing data. Front. Genet., 2018, 9: 119 CrossRef
  3. Upadhyay M., da Silva V.H., Megens H.J., Visker M.H.P.W., Ajmone-Marsan P., Bâlteanu V.A., Dunner S., Garcia J.F., Ginja C., Kantanen J., Groenen M.A.M., Crooijmans R.P.M.A. Distribution and functionality of copy number variation across European cattle populations. Front. Genet., 2017, 8: 108 CrossRef
  4. Alberto F.J., Boyer F., Orozco-terWengel P., Streeter I., Servin B., de Villemereuil P., Benjelloun B., Librado P., Biscarini F., Colli L., Barbato M., Zamani W., Alberti A., Engelen S., Stella A., Joost S., Ajmone-Marsan P., Negrini R., Orlando L., Rezaei H.R., Naderi S., Clarke L., Flicek P., Wincker P., Coissac E., Kijas J., Tosser-Klopp G., Chikhi A., Bruford M.W., Taberlet P., Pompanon F. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun., 2018, 9(1): 813 CrossRef
  5. Renaud G., Petersen B.,Seguin-Orlando A., Bertelsen M.F., Waller A., Newton R., Paillot R., Bryant N., Vaudin M., Librado P., Orlando L. Improved de novo genomic assembly for the domestic donkey. Sci. Adv., 2018, 4(4): eaaq0392 CrossRef
  6. Gaunitz C., Fages A., Hanghøj K., Albrechtsen A., Khan N., Schubert M., Seguin-Orlando A., Owens I.J., Felkel S., Bignon-Lau O., de Barros Damgaard P., Mittnik A., Mohaseb A.F., Davoudi H., Alquraishi S., Alfarhan A.H., Al-Rasheid K.A.S., Crubézy E., Benecke N., Olsen S., Brown D., Anthony D., Massy K., Pitulko V., Kasparov A., Brem G., Hofreiter M., Mukhtarova G., Baimukhanov N., Lõugas L., Onar V., Stockhammer P.W., Krause J., Boldgiv B., Undrakhbold S., Erdenebaatar D., Lepetz S., Mashkour M., Ludwig A., Wallner B., Merz V., Merz I., Zaibert V., Willerslev E., Librado P., Outram A.K., Orlando L. Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science, 2018, 360(6384): 111-114 CrossRef
  7. Librado P., Gamba C., Gaunitz C., Der Sarkissian C., Pruvost M., Albrechtsen A., Fages A., Khan N., Schubert M., Jagannathan V., Serres-Armero A., Kuderna L.F.K., Povolotskaya I.S., Seguin-Orlando A., Lepetz S., Neuditschko M., Thèves C., Alquraishi S., Alfarhan A.H., Al-Rasheid K., Rieder S., Samashev Z., Francfort H.P., Benecke N., Hofreiter M., Ludwig A., Keyser C., Marques-Bonet T., Ludes B., Crubézy E., Leeb T., Willerslev E., Orlando L. Ancient genomic changes associated with domestication of the horse. Science, 2017, 356(6336): 442-445 CrossRef
  8. Rubin C.J., Zody M.C., Eriksson J., Meadows J.R., Sherwood E., Webster M.T., Jiang L., Ingman M., Sharpe T., Ka S., Hallböök F., Besnier F., Carlborg O., Bed’hom B., Tixier-Boichard M., Jensen P., Siegel P., Lindblad-Toh K., Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010, 464(7288): 587-591 CrossRef
  9. Frantz L.A., Schraiber J.G., Madsen O., Megens H.J., Cagan A., Bosse M. Paudel Y., Crooijmans R.P., Larson G., Groenen M.A. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet., 2015, 47(10): 1141-1148 CrossRef
  10. Paudel Y., Madsen O., Megens H.J., Frantz L.A., Bosse M., Bastiaansen J.W., Crooijmans R.P., Groenen M.A. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics, 2013, 14: 449 CrossRef
  11. Park S.D., Magee D.A,. McGettigan P.A., Teasdale M.D., Edwards C.J., Lohan A.J., Murphy A., Braud M., Donoghue M.T., Liu Y., Chamberlain A.T., Rue-Albrecht K., Schroeder S., Spillane C., Tai S., Bradley D.G., Sonstegard T.S., Loftus B.J., MacHugh D.E. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol., 2015, 16: 234 CrossRef
  12. Zamani W., Ghasempouri S.M., Rezaei H.R., Naderi S., Hesari A.R.E., Ouhrouch A. Comparing polymorphism of 86 candidate genes putatively involved in domestication of sheep, between wild and domestic Iranian sheep. Meta Gene, 2018, 17: 223-231 CrossRef
  13. Der Sarkissian C., Ermini L., Schubert M., Yang M.A., Librado P., Fumagalli M., Jónsson H., Bar-Gal G.K., Albrechtsen A., Vieira F.G., Petersen B., Ginolhac A., Seguin-Orlando A., Magnussen K., Fages A., Gamba C., Lorente-Galdos B., Polani S., Steiner C., Neuditschko M., Jagannathan V., Feh C., Greenblatt C.L., Ludwig A., Abramson N.I., Zimmermann W., Schafberg R., Tikhonov A., Sicheritz-Ponten T., Willerslev E., Marques-Bonet T., Ryder O.A., McCue M., Rieder S., Leeb T., Slatkin M., Orlando L. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr. Biol., 2015, 25(19): 2577-2583 CrossRef
  14. Librado P., Fages A., Gaunitz C., Leonardi M., Wagner S., Khan N., Hanghøj K., Alquraishi S.A., Alfarhan A.H., Al-Rasheid K.A., Der Sarkissian C., Schubert M., Orlando L. The evolutionary origin and genetic makeup of domestic horses. Genetics, 2016, 204(2): 423-434 CrossRef
  15. Wutke S., Sandoval-Castellanos E., Benecke N., Döhle H.J., Friederich S., Gonzalez J., Hofreiter M., Lõugas L., Magnell O., Malaspinas A.S., Morales-Muñiz A., Orlando L., Reissmann M., Trinks A., Ludwig A. Decline of genetic diversity in ancient domestic stallions in Europe. Sci. Adv., 2018, 4(4): eaap9691 CrossRef
  16. Carneiro M., Rubin C.J., Di Palma F., Albert F.W., Alföldi J., Martinez Barrio A., Pielberg G., Rafati N., Sayyab S., Turner-Maier J., Younis S., Afonso S., Aken B., Alves J.M., Barrell D., Bolet G., Boucher S., Burbano H.A., Campos R., Chang J.L., Duranthon V., Fontanesi ., Garreau H., Heiman D., Johnson J., Mage R.G., Peng Z., Queney G., Rogel-Gaillard C., Ruffier M., Searle S., Villafuerte R., Xiong A., Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., Ferrand N., Lindblad-Toh K., Andersson L. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345(6200): 1074-1079 CrossRef
  17. Irving-Pease E.K., Frantz L.A.F., Sykes N., Callou C., Larson G. Rabbits and the specious origins of domestication. Trends Ecol. Evol., 2018, 33(3): 149-152 CrossRef
  18. Glazko V.I., Andreichenko I.N., Kovalchuk S.N., Glazko T.T., Kosovsky G.Yu. Candidate genes for control of cattle milk production traits. Russian Agricultural Sciences, 2016, 42(6): 458-464 CrossRef
  19. Glazko V., Zybaylov B., Glazko T. Domestication and genome evolution. International Journal of Genetics and Genomics, 2014, 2(4): 47-56 CrossRef
  20. Msalya G., Kim E.S., Laisser E.L., Kipanyula M.J., Karimuribo E.D., Kusiluka L.J., Chenyambuga S.W., Rothschild M.F. Determination of genetic structure and signatures of selection in three strains of Tanzania shorthorn zebu, boran and friesian cattle by genome-wide SNP analyses. PLoS ONE, 2017, 12(1): e0171088 CrossRef
  21. Upadhyay M.R., Chen W., Lenstra J.A., Goderie C.R., MacHugh D.E., Park S.D., Magee D.A., Matassino D., Ciani F., Megens H.J., van Arendonk J.A., Groenen M.A., European Cattle Genetic Diversity Consortium; RPMA Crooijmans. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity (Edinb), 2017, 118(2): 169-176 CrossRef
  22. Khaldi N., Shields D.C. Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species. Biology Direct, 2011, 6(1): 40-49 CrossRef
  23. Strömqvist M., Falk P., Bergström S., Hansson L., Lönnerdal B., Normark S., Hernell O. Human milk kappa-casein and inhibition of Helicobacter pylori adhesion to human gastric mucosa. J. Pediatr. Gastroenterol. Nutr., 1995, 21(3), 288-296.
  24. Glazko V.I. An attempt at understanding the genetic basis of domestication. Animal Science Papers and Reports, 2003, 21(2): 109-120.
  25. Glazko V.I., Glazko T.T. Domestication and N.I. Vavilov’s law of homologous series in hereditary variability. Russian Agricultural Sciences, 2013, 39(1): 8-12 CrossRef
  26. Glazko V., Zybaylov B., Glazko T. Domestication and genome evolution. International Journal of Genetics and Genomics, 2014, 2(4): 47-56 CrossRef
  27. Glazko V., Zybailov B., Glazko T. Asking the right question about the genetic basis of domestication: what is the source of genetic diversity of domesticated species? Adv. Genet. Eng., 2015, 4: 2 CrossRef
  28. Aliloo H., Pryce J.E., González-Recio O., Cocks B.G., Hayes B.J., Validation of markers with non-additive effects on milk yield and fertility in Holstein and Jersey cows. BMC Genet., 2015, 16: 89 CrossRef
  29. Flori L., Fritz S., Jaffrézic F., Boussaha M., Gut I., Heath S., Foulley J.L., Gautier M. The genome response to artificial selection: a case study in dairy cattle. PLoS ONE, 2009, 4(8): e6595 CrossRef
  30. Zhao F., McParland S., Kearney F., Du L., Berry D.P. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet. Sel. Evol., 2015, 47: 49 CrossRef
  31. Feng X., Jiang J., Padhi A., Ning C., Fu J., Wang A., Mrode R., Liu J.-F. Characterization of genome-wide segmental duplications reveals a common genomic feature of association with immunity among domestic animals. BMC Genomics, 2017, 18: 293 CrossRef
  32. Nevo E. Evolution of genome-phenome diversity under environmental stress. PNAS USA, 2001, 98(11): 6233-6240 CrossRef
  33. Nosil P., Funk D.J., Ortiz-Barrientos D. Divergent selection and heterogeneous genomic divergence. Mol. Ecol., 2009, 18: 375-402 CrossRef
  34. Owuor E.D., Fahima T., Beharav A., Korol A., Nevo E. RAPD divergence caused by microsite edaphic selection in wild barley. Genetica, 1999, 105(2): 177-192 CrossRef
  35. Bailey E., Lear T.L. Comparison of Thoroughbred and Arabian horses using RAPD markers. Animal Genetics, 1994, 25(Suppl. 1): 105-108 CrossRef
  36. Glazko V.I., Zelenaia L.B. Differentiation of domestic horse and Przewalski’s horse using various DNA sequences. Genetika, 1998, 34(7): 996-999.
  37. Glazko V.I., Dyman’ T.N., Tarasiuk S.I., Dubin A.V. The polymorphism of proteins, RAPD-PCR and ISSR-PCR markers in European and American bison and cattle. Cytol. Genet., 1999, 33(6): 30-39.
  38. Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20(2): 176-183 CrossRef
  39. Rychlik W., Spencer W.J., Rhoads R.E. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res., 1990, 18(21): 6409-6412
  40. Shiue Y.L., Bickel L.A., Caetano A.R., Millon L.V., Clark R.S., Eggleston M.L., Michelmore R., Bailey E., Guérin G., Godard S., Mickelson J.R., Valberg S.J., Murray J.D., Bowling A.T. A synteny map of the horse genome comprised of 240 microsatellite and RAPD markers. Animal Genetics, 1999, 30(1): 1-9 CrossRef
  41. Sulima Iu.Iu., Kalendar’ R.N., Sivolap Iu.M. The mapping of the barley genome by RAPD analysis using double haploid strains. Cytol. Genet., 2000, 34(4): 41-49.
  42. Owuor E.D., Fahima T., Beharav A., Korol A., Nevo E. RAPD divergence caused by microsite edaphic selection in wild barley. Genetica, 1999, 105(2):177-192.
  43. Kalendar R., Schulman A.H. Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol. Biol., 2014, 1115: 233-255 CrossRef
  44. Tomás D., Rodrigues J., Varela A., Veloso M.M., Viegas W., Silva M. Use of repetitive sequences for molecular and cytogenetic characterization of Avena species from Portugal. Int. J. Mol. Sci., 2016, 17(2): E203 CrossRef
  45. Shirasu K., Schulman A.H., Lahaye T., Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res., 2000, 10(7): 908-915 CrossRef
  46. Glazko V.I., Gladyr E.A., Feofilov A.V., Bardukov N.V., Glazko T.T. ISSR-PCR markers and mobile genetic elements in genomes of agricultural mammal species. Agricultural Biology, 2013, 2: 71-76 CrossRef
  47. The Bovine Genome Sequencing and Analysis Consortium, Elsik C.G., Tellam R.L., Worley K.C. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324(5926) 522-528 CrossRef
  48. Garcia-Etxebarria K., Jugo B.M. Evolutionary history of bovine endogenous retroviruses in the Bovidae family. BMC Evolutionary Biology, 2013, 13: 256 CrossRef
  49. Garcia-Etxebarria K., Sistiaga-Poveda M., Jugo B.M. Endogenous retroviruses in domestic animals. Current Genomics, 2014, 15(4): 256-265 CrossRef
  50. Zhang Y., Maksakova I.A., Gagnier L., van de Lagemaat L.N., Mager D.L. Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet., 2008, 4(2): e1000007 CrossRef
  51. Nellåker C., Keane T.M., Yalcin B., Wong K., Agam A., Belgard T.G., Flint J., Adams D.J., Frankel W.N., Ponting C.P. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol., 2012, 13(6): R45 CrossRef
  52. Mei L., Ding X., Tsang S.Y., Pun F.W., Ng S.K., Yang J., Zhao C., Li D., Wan W., Yu C.H., Tan T.C., Poon W.S., Leung G.K., Ng H.K., Zhang L., Xue H. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome. BMC Genomics, 2011, 12: 564 CrossRef
  53. Yang J.F., Ding X.F., Chen L., Mat W.K., Xu M.Z., Chen J.F., Wang J.M., Xu L., Poon W.S., Kwong A., Leung G.K., Tan T.C., Yu C.H., Ke Y.B., Xu X.Y., Ke X.Y., Ma R.C., Chan J.C., Wan W.Q., Zhang L.W., Kumar Y., Tsang S.Y., Li S., Wang H.Y., Xue H. Copy number variation analysis based on AluScan sequences. Journal of Clinical Bioinformatics, 2014, 4(1): 15 CrossRef
  54. Garcia-Etxebarria K., Jugo B.M. Genome-wide detection and characterization of endogenous retroviruses in Bos taurus. J. Virol., 2010, 84(20): 10852-10862 CrossRef
  55. Van der Kuyl A.C. Characterization of a full-length endogenous beta-retrovirus, EqERV-Beta1, in the genome of the horse (Equus caballus). Viruses, 2011, 3(6): 620-628 CrossRef
  56. Garcia-Etxebarria K., Jugo B.M. Genomic environment and digital expression of bovine endogenous retroviruses. Gene, 2014, 548(1): 14-21 CrossRef
  57. Oliveira S.G., Bao W., Martins C., Jurka J. Horizontal transfers of Mariner transposons between mammals and insects. Mob DNA, 2012, 3(1): 14 CrossRef
  58. Walsha A.M., Kortschaka R.D., Gardnerb M.G., Bertozzi T., Adelson D.L. Widespread horizontal transfer of retrotransposons. PNAS USA, 2013, 110(3): 1012-1016 CrossRef
  59. Chalopin D., Naville M., Plard F., Galiana D., Volff J.N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in Vertebrates. Genome Biol. Evol., 2015, 7(2): 567-580 CrossRef
  60. Koonin E.V. Viruses and mobile elements as drivers of evolutionary transitions. Phil. Trans. R. Soc. B, 2016, 371(1701): 20150442 CrossRef
  61. Ahmed M., Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp. Funct. Genom., 2012, 2012: Article ID 947089 CrossRef
  62. Behura S.K., Severson D.W. Association of microsatellite pairs with segmental duplications in insect genomes. BMC Genomics, 2013, 14: 907 CrossRef
  63. Sharma A., Wolfgruber T.K., Presting G.G. Tandem repeats derived from centromeric retrotransposons. BMC Genomics, 2013, 14: 142 CrossRef
  64. Bardukov N.V., Feofilov A.V., Glazko T.T., Glazko V.I. ISSR-PCR markers and mobile genetic elements in horse (Equus caballus) genome. Agricultural Biology, 2014, 4: 42-57 CrossRef
  65. Glazko V., Kosovsky G., Glazko T. High density of transposable elements in sequenced sequences in cattle genomes, associated with AGC microsatellites. Global Advanced Research Journal of Agricultural Science, 2018, 7(2): 034-045.
  66. Darvin Ch. Izmeneniya domashnikh zhivotnykh i kul'turnykh rastenii. Tom 4 [Changes in domestic animals and cultivated plants. V. 4]. Moscow-Leningrad, 1951 (in Russ.).
  67. Zeder M.A. Core questions in domestication research. PNAS USA, 2015, 112(11): 3191-3198 CrossRef
  68. Ibeagha-Awemu E.M., Zhao X. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front. Genet., 2015, 6: 302 CrossRef
  69. Te Pas M.F.W., Madsen J., Calus M.P.L., Smits M.A. The importance of endophenotypes to evaluate the relationship between genotype and external phenotype. Int. J. Mol. Sci., 2017, 18(2): 472 CrossRef