doi: 10.15389/agrobiology.2018.4.673eng

UDC 636.018:573.22

 

INTERRELATION OF NERVOUS, IMMUNE, ENDOCRINE SYSTEMS
AND NUTRITIONAL FACTORS IN THE REGULATION OF ANIMAL
RESISTANCE AND PRODUCTIVITY
(review)

V.A. Galochkin, K.S. Ostrenko, V.P. Galochkina, L.M. Fedorova

All-Russian Research Institute of Animal Physiology, Biochemistry and Nutrition — Branch  of Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, pos. Institut, Borovsk, 249013 Russia, e-mail bifip@kaluga.ru (✉ corresponding author V.A. Galochkin), ostrenkoks@gmail.com

ORCID:
Galochkin V.A. orcid.org/0000-0002-5075-3647
Galochkina V.P. orcid.org/0000-0002-3121-7339
Ostrenko K.S. orcid.org/0000-0003-2235-1701
Fedorova L.M. orcid.org/0000-0002-1514-3050
The authors declare no conflict of interests

Received May 3, 2016

 

Commercial livestock husbandry causes severe stress among animals resulting in up to 80 % emergence of secondary immunodeficiency. This review is an attempt to comprehensively analyze multiple interconnections between immune, neuroendocrine systems, together with nutrition, as essential factors for animal metabolism regulation, wellness, health, performance and productivity.  Secretion of stress hormones and the degree of inhibition of the immune response depend on the type of animal’s nervous system. Poor nutrition has a negative effect on the expression of immune response including humoral and cellular immunity synthesis of cytokine and plasma immunoreceptors (V.I. Fisinin et al., 2013; V.A. Galochkin et al., 2013; Y. Zhang et al., 2014; J.D. Ashwell et al., 2000; S. Cunningham-Rundles et al., 2005; V. Abhyankar et al., 2018; A. Haghikia et al., 2015; R.H. Oakley et al., 2013). Due to this relationship, immune, nervous and endocrine systems form virtual functionally integrated single super-system of immunobiological surveillance. Its purpose is to maintain body viability, efficiency and resistance to any physical, chemical, biological agents and psychosocial factors that can cause adverse effects or pathological conditions. The total body resistance reflects the combined effects of specific and nonspecific factors of innate and adaptive immune responses together with activity of a number of intracellular systems, including antioxidant-prooxidant system, monooxygenase, peroxisomal system (V.I. Lushchak, 2014; N. Sinha et al., 2015; V.A. Galochkin et al., 2015), which are together responsible not only for the neutralization of xenobiotics and endogenous toxins, but for the monitoring of homeostasis. Evolution of conceptual views on the immune system has developed into understanding of its function not only as a “shield and sword of the organism”. In-deep look in immune function and mechanisms is unthinkable without examining immune system as a regulatory component of a single triad with the nervous and endocrine systems.

Keywords: productive animals, the immune system, nervous, endocrine regulation, nonspecific resistance, health, productivity.

 

Full article (Rus)

Full article (Eng)

 

REFERENCES

  1. Poryvaeva A.P., Krasnoperov A.S., Vereshchak N.A., Vaganova L.S. Problemy veterinarnoi sanitarii, gigieny, ekologii, 2017, 2: 83-87 (in Russ.).
  2. Barashkin M.I. Agrarnyi vestnik Urala, 2015, 2: 113-119 (in Russ.).
  3. Ribatti D. Peter Brian Medawar and the discovery of acquired immunological tolerance. Immunol. Lett., 2015, 167(2): 63-66 CrossRef
  4. Kalisch R., Müller M.B., Tüscher O. A conceptual framework for the neurobiological study of resilience. Behav. Brain Sci., 2015, 38(92): 1-79 CrossRef
  5. Hommers L., Raab A., Bohl A., Weber H., Scholz C.J., Erhardt A., Binder E., Arolt V., Gerlach A., Gloster A., Kalisch R., Kircher T., Lonsdorf T., Ströhle A., Zwanzger P., Mattheisen M., Cichon S., Lesch K.P., Domschke K., Reif A., Lohse M.J., Deckert J. MicroRNA hsa-miR-4717-5p regulates RGS2 and may be a risk factor for anxiety-related traits. Am. J. Med. Genet. Part B, 2015, 168(4): 296-306. CrossRef
  6. Del Rey A., Besedovsky H.O. Immune-neuro-endocrine reflexes, circuits, and networks: physiologic and evolutionary implications. In: Endocrine immunology. W. Savino, F. Guaraldi (eds.). Front Horm Res. Basel, Karger, 2017, V. 48:1-18 CrossRef
  7. Panda S., Ding J.L. Natural antibodies bridge innate and adaptive immunity. J. Immunol., 2015, 194(1): 13-20 CrossRef
  8. Cardamone C., Parente R., Feo G.D., Triggiani M. Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol. Lett., 2016, 178: 10-14 CrossRef
  9. Comrie W.A., Lenardo M.J. Molecular classification of primary immunodeficiencies of T lymphocytes. Adv. Immunol., 2018, 138: 99-193 CrossRef
  10. Dunkelberger J.R., Song W.C. Complement and its role in innate and adaptive immune responses. Cell Res., 2010, 20(1): 34-50 CrossRef
  11. Surai P., Fisinin V.I. The modern anti-stress technologies in poultry: from antioxidants to vitagenes. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2012, 4: 3-13 CrossRef
  12. Abhyankar V., Bland P., Fernandes G. The role of systems biologic approach in cell signaling and drug development responses — a mini review. Med. Sci., 2018, 6(2): 1-9 CrossRef
  13. Fisinin V.I., Surai P. Ptitsevodstvo, 2013, 5: 4-10 (in Russ.).
  14. Goldstein D.S., McEwen B. Allostasis, homeostats, and the nature of stress. Stress, 2002, 5(1): 55-58 CrossRef
  15. Galochkin V.A., Cherepanov G.G. Problemy biologii produktivnykh zhivotnykh, 2013, 1: 5-29 (in Russ.).
  16. Cunningham-Rundles S., McNeeley D.F., Moon A. Mechanisms of nutrient modulation of the immune response. J. Allergy Clin. Immunol., 2005, 115(6): 1119-1128 CrossRef
  17. Galochkin V.A., Galochkina V.P., Ostrenko K.S. Development of theoretical bases and creation of antistress preparations of new generation for live-stock farming. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2009, 2: 43-55 (in Russ.).
  18. Sinha N., Dabla P.K. Oxidative stress and antioxidants in hypertension — a current review. Curr. Hypertens. Rev., 2015, 11(2): 132-142 CrossRef
  19. Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 2014, 224: 164-175 CrossRef
  20. Jones D.P. Redefining oxidative stress. Antioxidants & Redox Signaling, 2006, 8: 1865-1879 CrossRef
  21. Jones D.P. Radical-free biology of oxidative stress. American Journal of Physiology—Cell Physiology, 2008, 295(4): C849-C868 CrossRef
  22. Ostrenko K.S., Galochkina V.P., Galochkin V.A. Primenenie askorbata litiya dlya regulyatsii lipidno-kholesterolovogo obmena i sistemy reduktsii glutationa u suporosnykh svinomatok. Ukrainian Journal of Ecology, 2018, 8(2): 59-66.
  23. Belda X., Fuentes S., Daviu N., Nadal R., Armario A. Stress-induced sensitization: the hypothalamic-pituitary-adrenal axis and beyond. Stress, 2015, 18(3): 269-279 CrossRef
  24. Zhao X.-J., Zhao Z., Yang D.-D., Cao L.-L., Zhang L., Ji J., Gu J., Huang J.-Y., Sun X.-L. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus. Brain Res. Bull., 2017, 130: 146-155 CrossRef
  25. Picard M., McManus M.J., Gray J.D., Nasca C., Moffat C., Kopinski P.K., Seifert E.L., McEwen B.S., Wallace D.C. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. PNAS USA, 2015, 112(48): 6614-6623 CrossRef
  26. Lemos J.C., Wanat M.J., Smith J.S., Reyes B.A., Hollon N.G., Van Bockstaele E.J., Chavkin C., Phillips P.E. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature, 2012, 490: 402-406 CrossRef
  27. Brindley R.L., Bauer M.B., Walker L.A., Quinlan M.A., Carneiro A.M.D., Sze J.Y., Blakely R.D., Currie K.P.M. Adrenal serotonin derives from accumulation by the antidepressant-sensitive serotonin transporter. Pharmacol. Res., 2018, pii: S1043-6618(18)30429-8 (in press) CrossRef
  28. Madalena K.M., Lerch J.K. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plasticity, 2017, 2017: Article ID 8640970 CrossRef
  29. Ashwell J.D., Lu F.W., Vacchio M.S. Glucocorticoids in T cell development and function. Annu. Rev. Immunol., 2000, 18(1): 309-345 CrossRef
  30. Löwenberg M., Stahn C., Hommes D.W., Buttgereit F. Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids, 2008, 73(9-10): 1025-1029 CrossRef
  31. Reeves J.W., Fisher A.J., Newman M.G., Granger D.A. Sympathetic and hypothalamic-pituitary-adrenal asymmetry in generalized anxiety disorder. Psychophysiology, 2016, 53(6): 951-977 CrossRef
  32. Gil-Lozano M., Romaní-Pérez M., Outeiriño-Iglesias V., Vigo E., González-Matías L.C., Brubaker P.L., Mallo F. Corticotropin-releasing hormone and the sympathoadrenal system are major mediators in the effects of peripherally administered exendin-4 on the hypothalamic-pituitary-adrenal axis of male rats. Endocrinology, 2014, 155(7): 2511-2523 CrossRef
  33. Oakley R.H., Cidlowski J.A. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J. Allergy Clin. Immunol., 2013, 132(5): 1033-1044 CrossRef
  34. Blalock J.E. The syntax of immune-neuroendocrine communication. Immunology Today, 1994, 15(11): 504-511 CrossRef
  35. Edwards K.M., Morris N.B. Who’s the boss: determining the control pathways of cardiovascular and cellular immune responses to acute stress. Adv. Physiol. Educ., 2018, 42(2): 374-379 CrossRef
  36. Zhang J.Y. Liu T.H., He Y., Pan H.Q., Zhang W.H., Yin X.P., Tian X.L., Li B.M., Wang X.D., Holmes A., Yuan T.F., Pan B.X. Chronic stress remodels synapses in an amygdala circuit-specific manner. Biol. Psychiatry, 2018, pii: S0006-3223(18)31633-0 CrossRef
  37. Curley K.O. Jr., Neuendorff D.A., Lewis A.W., Cleere J.J., Welsh T.H., Randel R.D. Functional characteristics of the bovine hypothalamic-pituitary-adrenal axis vary with temperament. Hormones and Behavior, 2008, 53(1): 20-27 CrossRef
  38. Ramos R., Llabrés V., Monclús L., López-Béjar M., González-Solís J. Costs of breeding are rapidly buffered and do not affect migratory behavior in a long-lived bird species. Ecology, 2018, 0(0): Epub ahead of print CrossRef
  39. Avitsur R., Padgett D.A., Sheridan J.F. Social interactions, stress, and immunity. Neurologic Clinics, 2006, 24(3): 483-491 CrossRef
  40. Guzmán D.A., Lèche A., Contarde C.B., Nazar F.N., Marin R.H. Adrenocortical responses in Japanese quail classified by their permanence in proximity to either low or high density of conspecifics. Poultry Sci., 2018, 0: pey269-pey269 CrossRef
  41. Larauche M., Mulak A., Yuan P., Kanauchi O., Taché Y. Stress-induced visceral analgesia assessed non-invasively in rats is enhanced by prebiotic diet. World J. Gastroenterol., 2012, 18(3): 225-236 CrossRef
  42. Savignac H.M., Kiely B., Dinan T.G., Cryan J.F. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil., 2014, 26(11): 1615-1627 CrossRef
  43. Savignac H.M., Tramullas M., Kiely B. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res., 2015, 287: 59-72 CrossRef
  44. Zhang Y., Zhang Y., Gu W., He L., Sun B. Th1/Th2 cell’s function in immune system. In: T helper cell differentiation and their function. Advances in experimental medicine and biology. B. Sun (ed.). Springer, Dordrecht, 2014, V. 841: 45-65 CrossRef
  45. Jolly C.A., Fernandes G. Protein-energy malnutrition and infectious disease. In: Nutrition and immunology: principles and practice. M.E. Gershwin, J.B. German, C.L. Keen (eds.). Humana Press, Totowa, NJ, 2000: 195-202 CrossRef
  46. Bourke C.D., Berkley J.A., Prendergast A.J. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol., 2016, 37(6): 386-398 CrossRef
  47. O’Shea M., Bassaganya-Riera J., Mohede I.C. Immunomodulatory properties of conjugated linoleic acid. Am. J. Clin. Nutr., 2004, 79(6): 1199S-1206S CrossRef
  48. Yaqoob P., Calder P.C. Fatty acids and immune function: new insights into mechanisms. Brit. J. Nutr., 2007, 98(S1): S41-S45 CrossRef
  49. Miles E.A., Calder P.C. Fatty acids, lipid emulsions and the immune and inflammatory systems. In: Intravenous lipid emulsions. World review of nutrition and dietetics. P.C. Calder, D.L. Waitzberg, B. Koletzko (eds). Basel, Karger, 2015, V. 112: 17-30 CrossRef
  50. Haghikia A., Jörg S., Duscha A., Berg J., Manzel A., Waschbisch A., Hammer A., Lee D.H., May C., Wilck N., Balogh A., Ostermann A.I., Schebb N.H., Akkad D.A., Grohme D.A., Kleinewietfeld M., Kempa S., Thöne J., Demir S., Müller D.N., Gold R., Linker R.A. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2015, 43(4): 817-829 CrossRef
  51. Richter F.C., Obba S., Simon A.K. Local exchange of metabolites shapes immunity. Immunology, 2018, 0(0): Epub ahead of print CrossRef
  52. Lo H.M., Wang S.W., Chen C.L., Wu P.H., Wu W.B. Effects of all-trans retinoic acid, retinol, and β-carotene on murine macrophage activity. Food Funct., 2014, 5(1): 140-148 CrossRef
  53. Spinas E., Saggini A., Kritas S.K., Cerulli G., Caraffa A., Antinolfi P., Pantalone A., Frydas A., Tei M., Speziali A., Saggini R., Pandolfi F., Conti P. Can vitamin A mediate immunity and inflammation? J. Biol. Reg. Homeos. Ag., 2015, 29(1): 1-6.
  54. Sutton A.L., MacDonald P.N. Vitamin D: more than a “bone-a-fide” hormone. Mol. Endocrinol., 2003, 17(5): 777-791 CrossRef
  55. Sorice A., Guerriero E., Capone F., Colonna G., Castello G., Costantini S. Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini-Reviews in Medicinal Chemistry, 2014, 14(5): 444-452 CrossRef
  56. Berzina N., Markovs J., Dizhbite T., Apsite M., Vasilyeva S., Basova N., Smirnova G., Isajevs S. Oxidative stress and innate immunity status in chickens exposed to high dose of ascorbic acid. Cell Biochem. Funct., 2013, 31(7): 551-559 CrossRef
  57. Krueger L.A., Beitz D.C., Onda K., Osman M., O'Neil M.R., Lei S., Wattoo F.H., Stuart R.L., Tyler H.D., Nonnecke B. Effects of D-a-tocopherol and dietary energy on growth and health of preruminant dairy calves. J. Dairy Sci., 2014, 97(6): 3715-3727 CrossRef
  58. Sitrin J., Ring A., Garcia K.C., Benoist C., Mathis D. Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J. Exp. Med., 2013, 210(6): 1153-1165 CrossRef
  59. El-Kannishy G., Arafa M., Abdelaal I., Elarman M., El-Mahdy R. Persistent oxidative stress in patients with chronic active hepatitis-C infection after antiviral therapy failure. Saudi J. Gastroenterol., 2012, 18(6): 375-379 CrossRef
  60. Reddy K.K., Ravinder T., Kanjilal S. Synthesis and evaluation of antioxidant and antifungal activities of novel ricinoleate-based lipoconjugates of phenolic acids. Food Chem., 2012, 134(4): 2201-2207 CrossRef
  61. Cheng C.H., Chang S.J., Lee B.J., Lin K.L., Huang Y.C. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr., 2006, 60(10): 1207-1213 CrossRef
  62. Ströhle A., Bohn T. Folate and prevention of neural tube defects: new insights from a Bayesian model. Int. J. Vitam. Nutr. Res., 2015, 85(3-4): 109-111 CrossRef
  63. Ströhle A., Wolters M., Hahn A. Safety of folic acid. Med. Monatsschr. Pharm., 2015, 38(8): 297-306.
  64. Galochkin V.A., Galochkina V.P. Problemy biologii produktivnykh zhivotnykh, 2008, 4: 3-20 (in Russ.).
  65. Galochkin V.A., Cherepanov G.G. Problemy biologii produktivnykh zhivotnykh, 2013, 1: 5-29 (in Russ.).
  66. Galochkin V.A., Agafonova A.V., Galochkina V.P., Cherepanov G.G. Problemy biologii produktivnykh zhivotnykh, 2015, 1: 5-24 (in Russ.).
  67. Prasad A.S. Zinc in human health: effect of zinc on immune cells. Mol. Med., 2008, 14(5-6): 353-357 CrossRef
  68. Ibs K.H., Rink L. Zinc-altered immune function. J. Nutr., 2003, 133(5): 1452S-1456S CrossRef
  69. van Eijk L.T., Heemskerk S., van der Pluijm R.W., van Wijk S.M., Peters W.H., van der Hoeven J.G., Kox M., Swinkels D.W., Pickkers P. The effect of iron loading and iron chelation on the innate immune response and subclinical organ injury during human endotoxemia: a randomized trial. Haematologica, 2014, 99(3): 579-587 CrossRef
  70. Khoshfetrat M.R., Mohammadi F., Mortazavi S., Rashidi A., Neyestani T., Kalantari N., Esmaillzadeh A. The effect of iron-vitamin C co-supplementation on biomarkers of oxidative stress in iron-deficient female youth. Biol. Trace Elem. Res., 2013, 153(1-3): 171-177 CrossRef
  71. Parveen N., Ahmad S., Shadab G.G. Iron induced genotoxicity: attenuation by vitamin C and its optimization. Interdiscip. Toxicol., 2014, 7(3): 154-158 CrossRef
  72. Beard J.L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr., 2001, 131(2): 568S-579S CrossRef
  73. Percival S.S. Copper and immunity. Am. J. Clin. Nutr., 1998, 67(5): 1064S-1068S CrossRef
  74. Bonham M., O’Connor J.M., Hannigan B.M., Strain J.J. The immune system as a physiological indicator of marginal copper status? Br. J. Nutr., 2002, 87(5): 393-403 CrossRef
  75. de Vrese M., Schrezenmeir J. Probiotics, prebiotics, and synbiotics. In: Food biotechnology. Advances in biochemical engineering/biotechnology. V. 111. U. Stahl, U.E. Donalies, E. Nevoigt (eds.). Springer, Berlin, Heidelberg, 2008: 1-66 CrossRef
  76. Ruemmele F.M., Bier D., Marteau P., Rechkemmer G., Bourdet-Sicard R., Walker W.A., Goulet O. Clinical evidence for immunomodulatory effects of probiotic bacteria. J. Pediatr. Gastr. Nutr., 2009, 48(2): 126-141 CrossRef
  77. Dowling D.J., Levy O. Ontogeny of early life immunity. Trends Immunol., 2014, 35(7): 299-310 CrossRef

 

back