doi: 10.15389/agrobiology.2017.4.686eng

UDC 636.5:636.082.2:591.3



Yu.I. Zabudskii

Russian State Agrarian Correspondence University, 1, ul. Fuchika, Balashikha, Moscow Province, 143900 Russia, e-mail

The authors declare no conflict of interests


Zabudskii Yu.I.

Received February 22, 2017


Deposit of maternal hormones in the egg yolk is shown to significantly change the pattern of ontogenesis in descendants. Accumulation of maternal sexual steroids in yolk influences behavior, growth, morphology, immune function and viability of descendants (T. Groothuis et al., 2005). Testosterone and androstenedione cause changes in postnatal growth (H. Schwabl, 1996), immunocompetence (M. Tobler et al., 2010), models of competitive and agonistic behavior in non-reproductive relationships between individuals (Müller W. et al., 2009) and sexual intercourse (C. Eising et al., 2006). Such consequences develop as a result of regulation of corresponding functions in the descendant body, including indirect influence through other systems. Stress simulation in females by administration of corticosterone (K) led to a dose dependent change in growth and development in the chicken. Imbalance in fatty acids’ ratio and assimilation in descendant embryo occurred in the yolk (S. Yalçιn et al., 2011) reduce fertility and shell quality, and embryo mortality and death of chicks increase (M. Eriksen et al., 2003; Saino N. et al., 2005; Y.-H. Kim et al., 2014). Similar effects were found in the offspring of hens lines divergently selected by growth rate (A. Abdelkareem et al., 2013). In the yolk of white shell eggs of unstressed layers the corticosterone level is almost two times higher than that in brown shell eggs (K. Navara et al., 2010). Under the influence of different stress factors the activity of the hypothalamic-pituitary-gonadal axis alters, resulting in an inadequate kinetics of sex hormones and inhibition of the reproductive function. Increased concentration of blood corticosterone in the mother hens is accompanied by changes in the content of gonadal hormones in the egg yolk (A. Janczak et al., 2009; F. Guibert et al., 2013), productivity (A. Bertin et al., 2008; E. de Haas et al., 2013) and the sex ratio (S. Correa et al., 2005; T. Pike et al., 2005; S. Pryke et al., 2011). Migration of the hormones form a mother hen to the egg and the embryo, and their interference in metabolism regulation in the descendant occur during early ontogenesis, when the functions of organs and systems are the most labile. Changes in ontogenesis caused by accumulated maternal hormones can be regarded as an adaptive response in the descendants to be ready to a shift in environmental conditions (T. Mousseau et al., 1998; Z. Kankova et al., 2012). Due to egg-deposited maternal hormones the offspring can form phenotypic traits which are inherited epigenetically (T. Groothuis et al., 2008; D. Ho et al., 2011). All these finding should be taken into account at poultry commercial reproduction. When using technological methods and veterinary measures, it is necessary to appreciate possibility of transovarial transfer of signal information about outer conditions mediated by the maternal hormones to cause adaptations in the descendants.

Keywords: bird, egg, maternal hormones, accumulation, stress, ontogenesis descendants.


Full article (Rus)

Full text (Eng)



  1. Mousseau T.A., Fox C.W. The adaptive significance of maternal effects. Trends in Ecology & Evolution, 1998, 13(10): 403-407 CrossRef
  2. Groothuis T.G.G., Schwabl H. Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philosophical transactions of Royal Society B, 2008, 363: 1647-1661 CrossRef
  3. Ho D.H., Reed W.L., Burggren W.W. Egg yolk environment differentially influences physiological and morphological development of broiler and layer chicken embryos. The Journal of Experimental Biology, 2011, 214: 619-628 CrossRef
  4. Groothuis T.G.G., Müller W., von Engelhardt N., Carere C., Eising C. Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience and Biobehavioral Reviews, 2005, 29(2): 329-352 CrossRef
  5. Schwabl H. Maternal testosterone in the avian egg enhances postnatal growth. Comparative Biochemistry and Physiology Part A: Physiology, 1996, 114(3): 271-276 CrossRef
  6. Tobler M., Hasselquist D., Smith H.G., Sandell M.I. Short- and long-term consequences of prenatal testosterone for immune function: an experimental study in the zebra finch. Behavioral Ecology and Sociobiology, 2010, 64(5): 717-727 CrossRef
  7. Müller W., Dijkstra C., Groothuis T.G.G. Maternal yolk androgens stimulate territorial behavior in black-headed gull chicks. Biology Letters, 2009, 5(5): 586-588 CrossRef
  8. Eising C.M., Müller W., Groothuis T.G.G. Avian mothers create different phenotypes by hormone deposition in their eggs. Biology Letters, 2006, 2(1): 20-22 CrossRef
  9. Groothuis T.G.G., Eising C.M., Dijkstra C., Müller W. Balancing between costs and benefits of maternal hormone deposition in avian eggs. Biology Letters, 2005, 1(1): 78-81CrossRef
  10. Navara K.J., Hill G.E., Mendonca M.T. Variable effects of yolk androgens on growth, survival, and immunity in eastern bluebird nestlings. Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches, 2005, 78(4): 570-578 CrossRef
  11. Guibert F., Richard-Yris M.-A., Lumineau S., Kotrschal K., Guemene D., Bertin A., Mostl E., Houdelier C. Social instability in laying quail: consequences on yolk steroids and offspring’s phenotype. PLoS ONE, 2010, 5: e14069 CrossRef
  12. Bertin A., Richard-Yris M.-A., Houdelier C., Lumineau S., Moestl E., Kuchar A., Hirschenhauser K., Kotrschal K. Habituation to humans affects yolk steroid levels and offspring phenotype in quail. Hormones and Behavior, 2008, 54 (3): 396-402 CrossRef
  13. Müller W., Eising C.M., Dijkstra C., Groothuis T.G.G. Sex differences in yolk hormones depend on maternal social status in Leghorn chickens (Gallus gallus domesticus). Proceedings of the Royal Society London B, 2002, 269: 2249-2255 CrossRef
  14. Kankova Z., Zeman M., Okuliarova M. Selection for high egg testosterone and immune response of young Japanese quail under mild food restriction. Avian Biology Research, 2014, 7(1): 25-32 CrossRef
  15. Müller W., Groothuis T.G.G., Kasprzik A., Dijkstra C., Alatalo R.V., Siitari H. Prenatal androgen exposure modulates cellular and humoral immune function of black-headed gull chicks. Proceedings of the Royal Society B: Biological Sciences, 2005, 272: 1971-1977 CrossRef
  16. Sandell M.I., Tobler M., Hasselquist D. Yolk androgens and the development of avian immunity: an experiment in jackdaws (Corvus monedula). Journal of Experimental Biology, 2009, 212(6): 815-822 CrossRef
  17. Zabudskii Yu.I. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 1993, 4: 69-74 (in Russ.).
  18. Zabudskii Yu.I. Profilaktika teplovogo stressa u kur-nesushek posredstvom vypaivaniya rastvora khlorida ammoniya. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 1999, 2: 104-110 (in Russ.).
  19. Zabudskii Yu.I., Shuvalova M.V. Materialy XVII Mezhdunarodnoi konferentsiiVsemirnoi nauchnoi assotsiatsii po ptitsevodstvu (15-17 maya 2012 g.) [Proc. XVII Int. Conf. «Innovations and their use in commercial poultry», WPSA]. Sergiev Posad, 2012: 240-242 (in Russ.).
  20. Kavtarashvili A.Sh., Kolokol'nikova T.N. Physiology and productivity of poultry
    under stress (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 4: 25-37 (in Russ.).
  21. Miftakhutdinov A.V. Aktual'nye voprosy veterinarnoi biologii, 2013, 1: 49-53 (in Russ.).
  22. Fisinin V.I., Surai P., Kuznetsov A.I., Miftakhutdinov A.V., Terman A.A. Stressy i stressovaya chuvstvitel'nost' kur v myasnom ptitsevodstve: diagnostika i profilaktika [Stresses and stress sensitivity in meat chicks — detection and prevention]. Troitsk, 2013 (in Russ.).
  23. Fisinin V.I., Kavtarashvili A.Sh. Heat stress in poultry. I. Danger, related physiological changes and symptoms (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(2): 162-171 CrossRef
  24. Zabudskii Yu.I. Reproductive function in hybrid poultry. I. An impact of breeding for productivity traits (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2014, 4: 16-29 CrossRef (in Russ.).
  25. Zabudskii Yu.I. Reproductive function in hybrid poultry. II. An impact of breeding for traits other than productivity (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(4): 444-457 CrossRef
  26. Siegel H.S. Physiological stress in birds. BioScience, 1980, 30(8): 529-534 CrossRef
  27. Hill J.A. Indicators of stress in poultry. World Poultry Science Journal, 1983, 39(1): 24-32 CrossRef
  28. Moudgal R.P., Mohan J., Panda J.N. Adrenalin and noradrenalin in egg yolk of guinea fowl and chicken: age dependent changes. Indian Journal of Poultry Science, 1989, 24(4): 301-303.
  29. Bulmer E., Gil D. Chronic stress in battery hens: measuring corticosterone in laying hen eggs. International Journal of Poultry Science, 2008, 7(9): 880-883 CrossRef
  30. Johnson A.L. Reproduction in the female. In: Sturkie’s avian physiology. G.C. Whittow (ed.). San Diego, CA, Academic Press, 2002: 569-591.
  31. Dong H., Lin H., Jiao H.C., Song Z.G., Zhao J.P., Jiang K.J. Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus gallus domesticus) by corticosterone. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2007, 147(1): 189-195 CrossRef
  32. Cai Y.L., Song Z.G., Zhang X.H., Wang X.J., Jiao H.C., Lin H. Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone exposed broiler chickens (Gallus gallus domesticus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009, 150(2): 164-169 CrossRef
  33. Salvante K.G., Williams T.D. Effects of corticosterone on the proportion of breeding females, reproductive output and yolk precursor levels. General and Comparative Endocrinology, 2003, 130(3): 205-214 CrossRef
  34. Etches R.J., Williams J.B., Rzasa J. Effects of corticosterone and dietary changes in the hen on ovarian function, plasma LH and steroids and the response to exogenous LH-RH. Journal of Reproduction and Fertility, 1984, 70(1): 121-130 CrossRef
  35. Downing J.A., Bryden W.L. Determination of corticosterone concentrations in egg albumen: a non-invasive indicator of stress in laying hens. Physiology & Behavior, 2008, 95(3): 381-387 CrossRef
  36. Moudgal R.P., Mohan J., Panda J.N. Corticosterone-mediated depression in reproductive functioning of White Leghorn hens: action mechanism. Indian Journal of Animal Science, 1991, 61(8): 803-807.
  37. Eriksen M.S., Torjesen H.A., Bakken P.A. Prenatal exposure to corticosterone impairs embryonic development and increases fluctuating asymmetry in chickens (Gallus gallus domesticus). British Poultry Science, 2003, 44(5): 690-697 CrossRef
  38. Saino N., Romano M., Ferrari R., Martinelli R., Moller P. Stressed mothers lay eggs with high corticosterone levels which produce low-quality offspring. Journal of Experimental Zoology, 2005, 303a: 998-1006 CrossRef
  39. Zabudskii Yu.I. Reproductive function in hybrid poultry. III. An impact of breeder flock age (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2016, 51(4): 436-449 CrossRef
  40. Fisinin V.I., Kravchenko N.A. Doklady VASKHNIL, 1977, 7: 29-30 (in Russ.).
  41. Abdelkareem A.A., Wenqiang M., Feng G., Yingdong N., Grossmann R., Zhao R. Differences in egg deposition of corticosterone and embryonic expression of corticosterone metabolic enzymes between slow and fast growing broiler chickens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 164(1): 200-206 CrossRef
  42. Hayward L.S., Satterlee D.G., Wingfield J.C. Japanese quail selected for high plasma corticosterone response deposit high levels of corticosterone in their eggs. Physiological and Biochemical Zoology, 2005, 78(6): 1026-1031 CrossRef
  43. Murphy L.B. Responses of domestic fowl to novel food and objects. Applied Animal Ethology, 1977, 3(4): 335-349 CrossRef
  44. De Haas E.N., Bolhuis E., Kemp B., Groothuis T., Rodenburg T. Parents and early life environment affect behavioral development of laying hen chickens. PLoS ONE, 2014, 9(3): e90577 CrossRef
  45. Navara K., Pinson S. Yolk and albumen corticosterone concentrations in eggs laid by white versus brown caged laying hens. Poultry Science, 2010, 89(7): 1509-1513 CrossRef
  46. Fraisse F., Cockrem J.F. Corticosterone and fear behavior in white and brown caged laying hens. British Poultry Science, 2006, 47(2): 110-119 CrossRef
  47. Adriaansen-Tennekes R., Decuypere E., Parmentier H.K., Savelk-
    oul H.F.J. Chicken lines selected for their primary antibody response to sheep red blood cells show differential hypothalamic-pituitary-adrenal axis responsiveness to mild stressors. Poultry Science, 2009, 88(9): 1879-1882 CrossRef
  48. Koolhaas J. M. Coping style and immunity in animals: making sense of individual variation. Brain, Behavior, and Immunity, 2008, 22(5): 662-667 CrossRef
  49. Babacanoglu E., Yalçin S., Uysal S. Evaluation of a stress model induced by dietary corti-costerone supplementation in broiler breeders: effects on egg yolk corticosterone concentration and biochemical blood parameters. British Poultry Science, 2013, 54(4): 677-685 CrossRef
  50. Yalç?n S., Bagdatlioglu N., Babacanoglu E. Effect of maternal corticosterone on utilisation of residual yolk sac fatty acids by developing broiler embryo. British Poultry Science, 2011, 52(2): 264-272 CrossRef
  51. Kim Y.-H., Kim J., Yoon H.-S., Choi Y.-H. Effects of dietary corticosterone on egg production and quality in laying hens. Proc. 25th Annual Australian Poultry Science Symposium. Sydney, New South Wales, 2014: 126.
  52. Kim Y.-H., Kim J., Yoon H.-S., Choi Y.-H. Effects of dietary corticosterone on yolk colors and eggshell quality in laying hens. Asian-Australasian Journal of Animal Sciences, 2015, 28(6): 840-846 CrossRef
  53. Abdelkareem A.A., Wenqiang M., Yingdong N., Song W., Ruqian Z. Corticosterone in ovo modifies aggressive behaviors and reproductive performances through alterations of the hypothalamic-pituitary-gonadal axis in the chicken. Animal Reproduction Science, 2014, 146: 193-201 CrossRef
  54. Abdelkareem A.A., Wenqiang M., Yingdong N., Qin Z., Ruqian Z. Embryonic exposure to corticosterone modifies aggressive behavior through alterations of the hypothalamic pituitary adrenal axis and the serotonergic system in the chicken. Hormones and Behavior, 2014, 65(2): 97-105 CrossRef
  55. Hayward L.S., Wingfield J.C. Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. General and Comparative Endocrinology, 2004, 135(3): 365-371 CrossRef
  56. Hayward L.S., Richardson J.B., Grogan M.N., Wingfield J.C. Sex differences in the organizational effects of corticosterone in the egg yolk of quail. General and Comparative Endocrinology, 2006, 146(2): 144-148 CrossRef
  57. Hackl R., Bromundt V., Daisley J., Kotrschal K., Möstl E. Distribution and origin of steroid hormones in the yolk of Japanese quail eggs (Coturnix coturnix japonica). Journal of Comparative Physiology B, 2003, 173(4): 327-331 CrossRef
  58. Welberg L.A.M., Seckl J.R. Prenatal stress, glucocorticoids and the programming of the brain. Journal of Neuroendocrinology, 2001, 13(2): 113-128 CrossRef
  59. Lui L., Li A., Matthews S.G. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. American Journal of Physiology — Endocrinology and Metabolism, 2001, 280(5): E729-E739.
  60. Goutte A., Angelier F., Chastel C.C., Trouve C., Borge M., Bech S., Gabrielsen G.W., Chastel O. Stress and the timing of breeding: glucocorticoid-luteinizing hormone relationships in an artic seabird. General and Comparative Endocrinology, 2010, 169(1): 108-116 CrossRef
  61. Henriksen R., Groothuis T.G., Rettenbacher S. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: linking maternal stress and hormone-mediated maternal effects. PLoS ONE, 2011, 6(8): e23824 CrossRef
  62. Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 2000, 21(1): 55-89 CrossRef
  63. Rozenboim I., Tako E., Gal-Garber O., Proudman J.A., Uni Z. The effect of heat stress on ovarian function of laying hens. Poultry Science, 2007, 86(8): 1760-1765 CrossRef
  64. Zabudskii Yu.I. Ptitsevodstvo, 2004, 2: 13 (in Russ.).
  65. Zabudskii Yu.I., Golikova A.P., Fedoseeva N.A. Heat training for prenatal period of ontogenesis as a method to increase the thermostolerance in poultry (review). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2012, 4: 14-21 CrossRef (in Russ.).
  66. Zabudskii Yu.I., Kiselev L.Yu., Delyan A.S., Kamalov R.A., Golikova A.P., Fedoseeva N.A., Myshkina M.S. Problemy biologii produktivnykh zhivotnykh, 2012, 1: 5-16 (in Russ.).
  67. Okuliarova M., Sarnikova B., Rettenbacher S., Skrobanek P., Zeman M. Yolk testosterone and corticosterone in hierarchical follicles and laid eggs of Japanese quail exposed to long-term restraint stress. General and Comparative Endocrinology, 2010, 165(1): 91-96 CrossRef
  68. Badyaev A.V., Young R.L., Hill G.E., Duckworth R.A. Evolution of sex-biased maternal effects in birds. IV. Intra-ovarian growth dynamics can link sex determination and sex-specific acquisition of resources. Journal of Evolutionary Biology, 2008, 21(2): 449-460 CrossRef
  69. Pryke S.R, Griffith S.C. Genetic incompatibility drives sex allocation and maternal investment in a polymorphic finch. Science, 2009, 323(5921): 1605-1607 CrossRef
  70. Pryke S.R., Rollins L.A., Buttemer W.A., Griffit S.C. Maternal stress to partner quality is linked to adaptive offspring sex ratio adjustment. Behavioral Ecology, 2011, 22: 717-722 CrossRef
  71. Pike T.W., Petrie M. Offspring sex ratio is related to paternal train elaboration and yolk corticosterone in peafowl. Biology Letters, 2005, 1: 204-207 CrossRef
  72. Pike T.W., Petrie M. Experimental evidence that corticosterone affects offspring sex ratios in quail. Proceedings of the Royal Society B: biological sciences, 2006, 273(1590): 1093-1098 CrossRef
  73. Pike T.W., Petrie M. Potential mechanisms of avian sex manipulation. Biological Reviews, 2003, 78(4): 553-574 CrossRef
  74. Correa S.M., Adkins-Regan E., Johnson P.A. High progesterone during avian meiosis biases sex ratios toward females. Biology Letters, 2005, 1: 215-218 CrossRef
  75. Alonso-Alvarez C. Manipulation of primary sex-ratio: an updated review. Avian and Poultry Biology Reviews, 2006, 17(1): 1-20 CrossRef
  76. Cameron E.Z., Linklater W.L. Extreme sex ratio variation in relation to change in condition around conception. Biology Letters, 2007, 3: 395-397 CrossRef
  77. Pollet T.V., Fawcett T.W., Buunck A.P., Nettle D. Sex-ratio biasing towards daughters among lower ranking co-wives in Rwanda. Biology Letters, 2009, 5: 765-768 CrossRef
  78. Gam A.E., Mendonça M.T., Navara K.J. Acute corticosterone treatment prior to ovulation biases offspring sex ratios towards males in zebra finches Taeniopygia guttata. Journal of Avian Biology, 2011, 42(3): 253-258 CrossRef
  79. Pinson S.E., Parr C.M., Wilson J.L., Navara K.J. Acute corticosterone administration during meiotic segregation stimulates females to produce more male offspring. Physiological and Biochemical Zoology, 2011, 84(3): 292-298 CrossRef
  80. Pinson S.E., Wilson J.L., Navara K.J. Elevated testosterone during meiotic segregation stimulates laying hens to produce more sons than daughters. General and Comparative Endocrinology, 2011, 174(2): 195-201 CrossRef
  81. Gam A.E., Navara K.J. Endogenous corticosterone elevations five hours prior to ovulation do not influence offspring sex ratios in Zebra Finches. Avian Biology Research, 2016, 9(3): 131-138 CrossRef
  82. Bondarenko Yu.V. Nauchno-tekhnicheskii byulleten' Ukrainskogo nauchno-issledovatel'skogo instituta ptitsevodstva UAAN, 1986, 20: 3-6 (in Russ.).
  83. Janczak A., Torjesen P., Rettenbacher S. Environmental effects on steroid hormone concentrations in laying hens’ eggs. Acta Agriculturae Scandinavica, Section A — Animal Science, 2009, 59(2): 80-84 CrossRef
  84. Nätt D., Lindqvist N., Stranneheim H., Lundeberg J., Torjesen P.A., Jensen P. Inheritance of acquired behavior adaptations and brain gene expression in chickens. PLoS ONE, 2009, 4(7): e6405 CrossRef
  85. Guibert F., Lumineau S., Kotrschal K., M?stl E., Richard-Yris M.-A., Houdelier C. Trans-generational effects of prenatal stress in quail. Proceedings of the Royal society B: biological sciences, 2013, 280: 2012-2368 CrossRef
  86. Seckl J.R. Prenatal glucocorticoids and long-term programming. European Journal of Endocrinology, 2004, 151: U49-U62 CrossRef
  87. Muller W., Lessells M., Korsten P., von Engelhardt N. Manipulative signals in family conflict? On the function of maternal yolk hormones in birds. American Naturalist, 2007, 169(4): E84-E96 CrossRef
  88. Schwarz J.M., McCarthy M.M. Steroid-induced sexual differentiation of the developing brain: multiple pathways, one goal. Journal of Neurochemistry, 2008, 105(5): 1561-1572 CrossRef
  89. Meylan S., Clobert J. Is corticosterone mediated phenotype development adaptive? Maternal corticosterone treatment enhances survival in male lizards. Hormones and Behavior, 2005, 48(1): 44-52 CrossRef
  90. Trofimova L.K. Antenatal'nye stressy razlichnoi etiologii: vliyanie na beremennykh krys i ikh potomstvo. Avtoreferat kandidatskoi dissertatsii [Effects of antenatal stresses caused by different agents on pregnant mother rats and their progeny. PhD Thesis]. Moscow, 2009 (in Russ.).
  91. Kankova Z., Zeman M., Okuliarova M. Growth and innate immunity are not limited by selection for high egg testosterone content in Japanese quail. The Journal of Experimental Biology, 2012, 215: 617-622 CrossRef
  92. Mariette M.M., Buchanan K.L. Prenatal acoustic communication programs offspring for high posthatching temperatures in a songbird. Science, 2016, 353(6301): 812-814 CrossRef
  93. Bobrovnik V.S. Rynok inkubatsionnogo yaitsa Rossii. Available No date (in Russ.).
  94. Hristakieva P., Mincheva N., Oblakova M., Lalev M., Ivanova I. Effect of genotype on production traits in broiler chickens. Slovak Journal of Animal Science, 2014, 47(1): 19-24.
  95. Dixon G., Green L.E. Effect of diet change on the behavior of chicks of an egg-laying strain. Journal of Applied Animal Welfare Science, 2006, 9(1): 41-58 CrossRef
  96. Pellegrini S., Busso J.M., Lèche A., Marin R.H. Effects of diet, time since defecation, and drying process of the droppings on corticosterone metabolite measurements in Japanese quail. Poultry Science, 2015, 94(5): 1068-1074 CrossRef
  97. Sirotkin A.V., Harrath A.H., Grossmann R. The role of metabolic state and obestatin in control of chicken ovarian hormone release. Poultry Science, 2016, 95(8): 1939-1942 CrossRef
  98. Sirotkin A.V., Pavlova S., Tena-Sempere M., Grossmann R., Jiménez M.R., Rodriguez J.M.C., Valenzuela F. Food restriction, ghrelin, its antagonist and obestatin control expression of ghrelin and its receptor in chicken hypothalamus and ovary. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 16(41): 141-153 CrossRef
  99. Edens F.W. Influence of atmospheric ammonia on serum corticosterone, estradiol-17 and progesterone in laying hens. International Journal of Poultry Science, 2015, 14(8): 427-435.