doi: 10.15389/agrobiology.2017.4.830eng

UDC 636.086.3:581.1:577.171.52:58.071:631.847.3

The equipment of Resource Center of SPU Scientific Park for development of molecular and cell tecynologies (NIR № 109-98) has been used.
Supported in part by SPU (grant № 1.37.534.2016), Russian Science Foundations (grant № 16-16-00118), Russian Foundation for Basic Research (grants № 15-29-02753-ofi-m and № 15-04-04750-а)



A.P. Yurkov1, 2, 3, S.V. Veselova4, L.M. Jacobi1, G.V. Stepanova5,
G.R. Kudoyarova6, M.F. Shishova3

1All-Russian Research Institute for Agricultural Microbiology, Federal Agency of Scientific Organizations, 3, sh. Podbel’skogo, St. Petersburg, 196608 Russia,
e-mail (corresponding author),;
2Russian State Hydrometeorological University, Ministry of Education and Science of the Russian Federation, 98, Malookchtinskiy pr., St. Petersburg, 195196 Russia;
3Saint-Petersburg State University, Ministry of Education and Science of the Russian Federation, 7/9, Universitetskaya nab., St. Petersburg, 199034 Russia,
e-mail (corresponding author);
4Institute of Biochemistry and Genetics of Ufa Scientific Center RAS, Federal Agency of Scientific Organizations, 71, Ufa, Prospekt Oktyabrya, 450054 Russia,
5V.R. Williams All-Russian Fodder Research Institute, Federal Agency of Scientific Organizations, 1, Nauchnii Gorodok, Lobnya, Moscow Province, 141055 Russia,
6Ufa Institute of Biology RAS, Federal Agency of Scientific Organizations, 69, Prospekt Oktyabrya, Ufa, 450054 Russia, e-mail

The authors declare no conflict of interests


Yurkov A.P.

Shishova M.F.

Kudoyarova G.R.


Received October 21, 2016


The investigation is focused on the elucidation of symbiotic effectiveness mechanisms of arbuscular mycorrhiza (AM) which is one of the most widespread symbiosis, developed between Glomeromycota fungi and 92 % of land plants. The role of auxin in regulation of plant development with AM fungi symbiosis might be considered as one of such mechanisms, since this plant hormone plays a key role in root development and accelerates spore germination, intensifies the infection process and subsequent growth of the hyphae after exogenous addition. This study is aimed to identify for the first time the dynamics of endogenous indole acetic acid (IAA) concentration in roots and leaves of strongly mycotrophic black medick line (Medicago lupulina) under conditions of low-phosphorus available for plants nutrition in the soil. Analyses were carried out in the course of plant development. On day 14 after sowing (DAS), at the stage of the first true leaf development, we observed primary infection, the formation of the first arbuscules (a, %) and vesicles in roots, and the beginning of lateral root formation and primary growth response to mycorrhization manifested in the development of above-ground plant parts. On DAS 21 (the second leaf stage) there was a significant growth response to mycorrhization and arbuscule development in roots. On DAS 35, at shooting stage, the arbuscule development and active development of vesicles in roots occurred. Finally, on DAS 50 (at flowering start) the vesicles development was more active. Analysis of mycorrhization level showed that arbuscules played a key role in the formation of effective symbiosis in black medick at the stages of the first and second leaf, and the a/(100 % - a) value increased to 8.0±0.7 and 18.5±1.3, respectively. At later stages of shooting and flowering, their role diminished as compared to the mycelium development in the roots. The efficiency of the inoculation with AM Rhizophagus irregularis symbiotic fungi tested by weight of aboveground parts significantly increased starting with the phase of the second leaf, and remained high until the end of the experiment (above 120 %). At the same time, the weight response was absent in roots until the phase of flowering. A 2.2-fold increase in IAA level in roots at the phase of the first leaf, i.e. at the earliest stages of AM symbiosis establishing, led to inhibition of the root growth. On the other hand, the 1.8-fold increase in endogenous IAA in leaves at the second leaf phase was preceded by the elevation of AM efficiency by weight for aboveground parts, and, therefore, a shift in IAA concentration significantly intensified development of the aboveground parts at the shooting and flowering.

Keywords: auxin, indolilacetic acid, arbuscular mycorrhiza, symbiotic efficiency, Rhizophagus irregularis, Medicago lupulina.


Full article (Rus)

Full text (Eng)



  1. Smit S.E., Rid D.Dzh. Mikoriznyi simbioz [Mycorrhizal symbiosis]. Moscow, 2012 (in Russ.).
  2. Fusconi A. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Annals of Botany, 2014, 113: 19-33 CrossRef
  3. Harrison M.J. Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology, 2005, 59: 19-42 CrossRef
  4. Balzergue C., Puech-Pagès V., Bécard G., Rochange S.F. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events. Journal of Experimental Botany, 2011, 62: 1049-1060 CrossRef
  5. Oláh B., Brière C., Bécard G., Dénarié J., Gough C. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. The Plant Journal, 2005, 44: 195-207 CrossRef
  6. Paszkowski U., Boller T. The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta, 2002, 214: 584-590 CrossRef
  7. Rouached H., Arpat A.B., Poirier Y. Regulation of phosphate starvation responses in plants: signaling players and crosstalks. Molecular Plant, 2010, 3: 288-299 CrossRef
  8. Chiou T.J., Lin S.I. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 2011, 62: 185-206 CrossRef
  9. Hammond J.P., White P.J. Sugar signaling in root responses to low phosphorus availability. Plant Physiology, 2011, 156: 1033-1040 CrossRef
  10. Sato A., Miura K. Root architecture remodeling induced by phosphate starvation. Plant Signaling & Behavior, 2011, 6: 1122-1126 CrossRef
  11. Niu Y.F., Chai R.S., Jin G.L., Wang H., Tang C.X., Zhang Y.S. Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 2013, 112: 391-408 CrossRef
  12. Ludwig-Müller J. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Arbuscular mycorrhizas: physiology and function. Y. Kapulnik, H. Koltai (eds.). Springer, NY, 2010 CrossRef
  13. Hanlon M.T., Coenen C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytologist, 2011, 189: 701-709 CrossRef
  14. Torelli A., Trotta A., Acerbi L., Arcidiacono G., Berta G., Branca C. IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant and Soil, 2000, 226: 29-35 CrossRef
  15. Berta G., Fusconi A., Trotta A., Scannerini S. Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytologist, 1990, 114: 207-215 CrossRef
  16. Trotta A., Carminati C., Schellenbaum L., Scannerini S., Fusconi A., Berta G. Correlation between root morphogenesis, VA mycorrhizal infection and phosphorus nutrition. In: Plant roots and their environment. B.L. McMichael, H. Person (eds.). Elsevier, Amsterdam, 1991.
  17. Meixner C., Ludwig-Müller J., Miersch O., Gresshoff P., Staehelin C., Vierheilig H. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta, 2005, 222: 709-715 CrossRef
  18. Kaldorf M., Ludwig-Müller J. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum, 2000, 109: 58-67 CrossRef
  19. Fitze D., Wiepninga A., Kaldorf M., Ludwig-Müller J. Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. Journal of Plant Physiology, 2005, 162: 1210-1219 CrossRef
  20. Overvoorde P., Fukaki H., Beeckman T. Auxin control of root development. Cold Spring Harbor Perspectives in Biology, 2010, 2: a001537 CrossRef
  21. Foo E. Auxin influences strigolactones in pea mycorrhizal symbiosis. Journal of Plant Physiology, 2013, 170: 523-528 CrossRef
  22. Liao D., Chen X., Chen A., Wang H., Liu J., Liu J., Gu M., Sun S., Xu G. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Plant & Cell Physiology, 2015, 56(4): 674-687 CrossRef
  23. Dubrovsky J.G., Napsucialy-Mendivil S., Duclercq J., Cheng Y., Shishkova S., Ivanchenko M.G., Friml J., Murphy A.S., Benková E. Auxin minimum defines a developmental window for lateral root initiation. New Phytologist, 2011, 191: 970-983 CrossRef
  24. Boivin S., Fonouni-Farde C., Frugier F. How auxin and cytokinin phytohormones modulate root microbe interactions. Frontiers in Plant Science. 2016, 7(1240): 1-12 CrossRef
  25. Jentschel K., Thiel D., Rehn F., Ludwig-Müller J. Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiologia Plantarum, 2007, 129: 320-333 CrossRef
  26. Yurkov A.P., Shishova M.F., Semenov D.G. Osobennosti razvitiya lyutserny khmelevidnoi s endomikoriznym gribom [Traits of black medick development with endomycorrhizal fungus]. Saarbryukken, 2010 (in Russ.).
  27. Yurkov A.P., Yakobi L.M., Stepanova G.V., Dzyubenko N.I., Provo-
    rov N.A., Kozhemyakov A.P., Zavalin A.A. Inoculation efficiency of Glomus intraradices and intrapopulation variability in plants of Medicago lupulina L. on productivity and forming of mycorrhiza. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2007, 5: 67-74 (in Russ.).
  28. Phillips J.M., Hayman D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-161 CrossRef
  29. Trouvelot A., Kough J.L., Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes ayant une signification fonctionnelle. In: Physiological and genetical aspects of mycorrhizae. V. Gianinazzi-Pearson, S. Gianinazzi (eds.). INRA-Press, Paris, 1986.
  30. Yurkov A.P., Yakobi L.M., Gapeeva N.E., Stepanova G.V., Shishova M.F. Ontogenez, 2015, 46(5): 313-326 CrossRef (in Russ.).
  31. Vorob'ev N.I., Yurkov A.P., Provorov N.A. Programma vychisleniya indeksov mikorizatsii kornei rastenii. Svid-vo № 2016612112 ot 12.02.16 ogos. reg. programmy EVM. FGBNU VNIISKHM (RF). Zayavl. 21.12.2015. Opubl. 20.03.16 [The program for calculation of indexes of plant root mycorrhization. Registration certificate of computer software  2016612112, 12.02.16. FSBSI ARRIAM (RU). Appl.: December 21, 2015. Publ. March 20, 2016] (in Russ.).
  32. Odum Yu. Osnovy ekologii [Fundamentals of ecology]. Moscow, 1975 (in Russ.).
  33. Veselov S.Yu., Kudoyarova G.R., Egutkin N.L., Gyuli-Zade V.Z., Mustafina A.R., Kof E.M. Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid. Physiologia Plantarum, 1992, 86: 93-96 CrossRef
  34. Denison R.F., Kiers E.T. Life histories of symbiotic rhizobia and mycorrhizal fungi. Current Biology, 2011, 21(18): 775-785 CrossRef
  35. Schaarschmidt S., Gonzalez M.C., Roitsch T., Strack D., Sonnewald U., Hause B. Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiology, 2007, 143: 1827-1840 CrossRef
  36. Scannerini S., Fusconi A., Mucciarelli M. The effect of endophytic fungi on host plant morphogenesis. In: Symbiosis: organisms and model systems. J. Seckback (ed.). Kluwer Academic Publishers, Dordrecht, 2001 CrossRef
  37. Smith S.E., Smith F.A. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 2012, 104: 1-13 CrossRef
  38. Douds D.D., Pfeffer P.E., Shachar-Hill Y. Carbon partitioning, cost and metabolism of arbuscular mycorrhizae. In: Arbuscular mycorrhizas: physiology and function. Y. Kapulnick, D.D. Jr. Douds (eds.). Kluwer Academic Publishers, Dordrecht, 2000 CrossRef
  39. Graham J.H. Assessing costs of arbuscular mycorrhizal symbiosis agroecosystems fungi. In: Current advances in mycorrhizae research. G.K. Podila, D.D. Jr. Douds (eds.). APS Press, Saint Paul, 2000 CrossRef
  40. Bago B., Pfeffer P.E., Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology, 2000, 124(3): 949-958 CrossRef
  41. Feddermann N., Finlay R., Boller T., Elfstrand M. Functional diversity in arbuscular mycorrhiza — the role of gene expression, phosphorus nutrition and symbiotic efficiency. Fungal Ecology, 2010, 3: 1-8 CrossRef
  42. Albacete A., Ghanem M.E., Martínez-Andújar C., Acosta M., Sánchez-Bravo J., Martínez V., Lutts S., Dodd I.C., Pérez-Alfocea F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinised tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany, 2008, 59: 4119-4131 CrossRef
  43. Vysotskaya L.B., Trekozova A.W., Kudoyarova G.R. Effect of phosphorus starvation on hormone content and growth of barley plants. Acta Physiologiae Plantarum, 2016, 38(108): 1-6 CrossRef
  44. Emel'yanov V.V., Kirchikhina N.A., Lastochkin V.V., Chirkova T.V. Fiziologiya rastenii, 2003, 50(6): 922-929 (in Russ.).