doi: 10.15389/agrobiology.2017.4.716eng

UDC 636.5:636.084:591.05

Acknowledgements:
Peter F. Surai is supported by megagrant from the Government of the Russian Federation (Contract № 14.W03.31.0013).

 

VITAGENE REGULATION AS A NEW STRATEGY TO FIGHT
STRESSES IN POULTRY PRODUCTION

M.A. Grigorieva1, O.A. Velichko1, S.V. Shabaldin1, V.I. Fisinin2,
P.F. Surai3, 4, 5, 6

1AO Prodo Tumen Broiler, s. Kaskara, Tumen Region, Tyumen Province, 625512 Russia, e-mail M.GRIGORE-VA@tumen.prodo.ru;
2Federal Scientific Center All-Russian Research and Technological Poultry Institute RAS, Federal Agency of Scientific Organizations,10, ul. Ptitsegradskaya, Sergiev Posad, Moscow Province, 141315 Russia, e-mail fisinin@land.ru;
3Trakia University, Stara Zagora, 6000, Bulgaria;
4Szent Istvan University, Godolo, H-2103, Hungary;
5K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 23, ul. Akademika K.I. Skryabina, Moscow, 109472 Russia;
6Feed-Food Ltd, 53 Dongola Road, Ayr, KA7 3BN, Scotland, UK,
e-mail psurai@feedfood.co.uk (corresponding author)

The authors declare no conflict of interests

ORCID:

Fisinin V.I.
orcid.org/0000-0003-0081-6336

Surai P.F.
orcid.org/0000-0002-5012-8681

Received May 5, 2017

 

Commercial poultry production is associated with various stresses leading to decrease of productive and reproductive performance of growing chickens, parent birds and layers. In commercial poultry/animal production, there are four major types of stress: technological, environmental, nutritional and internal stresses. A growing body of evidence indicates that most of the stresses in poultry production at the cellular level are associated with oxidative stress due to excess of free radical production or inadequate antioxidant protection. The vitagene concept of fighting stresses emerged as a new direction in a nutritional research and it was successfully transferred from medical sciences to agricultural sciences, including poultry and pig production. In fact, vitagene regulation by nutritional means appeared as a new approach to realise a full potential of the body for adaptation to stress conditions in poultry/animal production. Therefore, the aim of the study was to test if supplementation of the vitagene-regulating antioxidant mixture (Magic Antistress Mix/PerforMax) with drinking water can improve broiler performance in stressful conditions of commercial chicken production. The experiment was conducted at the poultry farm AO «Prodo Tumenskiy Broiler» (Tumen region, Russia) in a special poultry house designed and equipped for conducting experimental trials and measuring growth parameters weekly. Twelve thousand and four hundred newly hatched Arbor Acres chicks were divided into two equal groups with four replicates in each group and placed in poultry house. The results confirmed the idea that using vitagene-regulating mixture with drinking water can improve chicken performance, including improvement in FCR and vaccination efficacy.

Keywords: chicken, vitagenes, stress, nutrition.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Soleimani A.F., Zulkifli I., Omar A.R., Raha A.R. Physiological responses of 3 chicken breeds to acute heat stress. Poultry Sci., 2011, 90: 1435-1440 CrossRef
  2. Bureau C., Hennequet-Antier C., Couty M., Guemene D. Gene array analysis of adrenal glands in broiler chickens following ACTH treatment. BMC Genomics, 2009, 10: 430 CrossRef
  3. P.F. Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham, 2002.
  4. Surai P.F. Selenium in nutrition and health. Nottingham University Press, Nottingham, 2006.
  5. Mezes M., Surai P.F., Salyi G., Speake B.K., Gaal T., Maldjian A. Nutritional metabolic diseases in poultry and disorders of the biological antioxidant defence system. Acta Veterinaria Hungarica, 1997, 45: 349-360.
  6. Fellenberg M.A., Speisky H. Antioxidants: Their effects on broiler oxidative stress and its meat oxidative stability. World's Poultry Science Journal, 2006, 62: 53-70.
  7. Estevez M. Oxidative damage to poultry: from farm to fork. Poultry Sci., 2015, 94: 1368-1378 CrossRef
  8. Akbarian A., Michiels J., Degroote J., Majdeddin M., Golian A., De Smet S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol., 2016, 7: 37 CrossRef
  9. Calabrese V., Guagliano E., Sapienza M., Panebianco M., Calafato S., Puleo E., Pennisi G., Mancuso C., Butterfield D.A., Stella A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem. Res., 2007, 32: 757-773.
  10. Surai P.F. Antioxidant systems in poultry biology: superoxide dismutase. Journal of Animal Research and Nutrition, 2015, 1: 1-17.
  11. Calabrese V., Boyd-Kimball D., Scapagnini G., Butterfield D.A. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo, 2004, 18: 245-267.
  12. Calabrese V., Cornelius C., Mancuso C., Barone E., Calafato S., Bates T., Rizzarelli E., Kostova A.T. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Frontiers in Bioscience, 2009, 14: 376-397.
  13. Calabrese V., Giordano J., Crupi R., Di Paola R., Ruggieri M., Bianchini R., Ontario M.L., Cuzzocrea S., Calabrese E.J. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J. Neurosci. Res., 2017, 95(5): 1182-1193 CrossRef
  14. Calabrese V., Giordano J., Signorile A., Laura Ontario M., Castori-
    na S., De Pasquale C., Eckert G., Calabrese E.J. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res., 2016, 94: 1588-1603 CrossRef
  15. Calabrese V., Giordano J., Ruggieri M., Berritta D., Trovato A., Ontario M.L., Bianchini R., Calabrese E.J. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J. Neurosci. Res., 2016, 94: 1488-1498 CrossRef
  16. Calabrese V., Cornelius C., Cuzzocrea S., Iavicoli I., Rizzarelli E., Calabrese E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Molecular Aspects of Medicine, 2011, 32: 279-304 CrossRef
  17. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Iavicoli I., Di Paola R., Koverech A., Cuzzocrea S., Rizzarelli E., Calabrese E.J. Cellular stress responses, hermetic phytochemicals and vitagenes in aging and longevity. BBA, 2012, 1822: 753-783 CrossRef
  18. Calabrese V., Scapagnini G., Davinelli S., Koverech G., Koverech A., De Pasquale C., Salinaro A.T., Scuto M., Calabrese E.J., Genazzani A.R. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. Journal of Cell Communication and Signalling, 2014, 8: 369-384 CrossRef
  19. Calabrese V., Calafato S., Puleo E., Cornelius C., Sapienza M., Morganti P., Mancuso C. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: role of vitagenes. Clinics in Dermatology, 2008, 26: 358-363 CrossRef
  20. Calabrese V., Cornelius C., Trovato A., Cavallaro M., Mancuso C., Di Rienzo L., Condorelli D., De Lorenzo A., Calabrese E.J. The hormetic role of dietary antioxidants in free radical-related diseases. Current Pharmaceutical Design, 2010, 16: 877-883.
  21. Cornelius C., Koverech G., Crupi R., Di Paola R., Koverech A., Lodato F., Scuto M., Salinaro A.T., Cuzzocrea S., Calabrese E.J., Calabrese V. Osteoporosis and Alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Frontiers in Pharmacology, 2014, 5: 120 CrossRef
  22. Fisinin V.I., Surai P.F. Ptitsa i ptitseprodukty, 2011: 5: 23-26 (in Russ.).
  23. Surai P.F., Fisinin V.I. The modern anti-stress technologies in poultry production: from antioxidants to vitagenes. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2012, 4: 3-13 CrossRef
  24. Surai P.F., Mel'nichuk S.D. Svinovodstvo Ukrainy, 2012, 2: 10-15 (in Russ.).
  25. Surai P.F., Fisinin V.I. Vitagenes in poultry production. Part 1. Technological and environmental stresses. World's Poultry Science Journal, 2016, 72, 721-733 (in Russ.).
  26. Surai P.F., Fisinin V.I. Vitagenes in poultry production. Part 2. Nutritional and Internal stresses. World's Poultry Science Journal, 2016, 72: 761-772.
  27. Surai P.F., Fisinin V.I. Vitagenes in poultry production. Part 3. Vitagene concept development. World's Poultry Science Journal, 2016, 72: 793- 804.
  28. Shatskikh E.V., Latypova E.N., Nesvet U.G., Koburneev I.V. Ispol'zovanie antistressovykh preparatov v yaichnom ptitsevodstve [Application of anti-stress compositions in egg commercial production]. Ekaterinburg, 2016 (in Russ.).
  29. Scanes CG. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry Sci., 2016, 95: 2208-2215 CrossRef
  30. Gessner D.K., Ringseis R., Eder K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. (Berl.), 2017, 101: 605-628 CrossRef
  31. Habibian M., Sadeghi G., Ghazi S., Moeini M.M. Selenium as a feed supplement for heat-stressed poultry: a review. Biol. Trace Elem. Res., 2015, 165: 183-193 CrossRef
  32. Saeed M., Babazadeh D., Naveed M., Arain M.A., Hassan F.U., Chao S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review. Trop. Anim. Health Prod., 2017, First Online 21 July: 1-10 CrossRef
  33. Shatskih E., Latipova E., Fisinin V., Denev S., Surai P. Molecular mechanisms and new strategies to fight stresses in egg-producing birds. Agric. Sci. Technol., 2015, 7: 3-10.
  34. Decuypere E., Tona K., Bruggeman V., Bamelis F. The day-old chick: a crucial hinge between breeders and broilers. World's Poultry Science Journal, 2001, 57: 127-138.
  35. Noy Y., Uni Z. Early nutrition strategy. World's Poultry Science Journal, 2010, 66: 639-646.
  36. Cherian G. Nutrition and metabolism in poultry: role of lipids in early diet. J. Anim. Sci. Biotechnol., 2015, 6(1): 28 CrossRef
  37. Wang Y., Li Y., Willems E., Willemsen H., Franssens L., Koppenol A., Guo X., Tona K.,  Decuypere E., Buyse J., Everaert N. Spread of hatch and delayed feed access affect  post hatch performance of female broiler chicks up to day 5. Animal,  2014, 8(4): 610-617.
  38. Noy Y., Sklan D. Different types of early feeding and performance in chicks and poults. The Journal of Applied Poultry Research, 1999, 8: 16-24.
  39. Geyra A., Uni Z., Sklan D. Enterocyte dynamics and mucosal development in the posthatch chick. Poultry Sci., 2001, 80: 776-782.
  40. Hager J.E., Beane W.L. Posthatch incubation time and early growth of broiler chickens. Poultry Sci., 1983, 62: 247-254.
  41. Pinchasov Y., Noy Y. Comparison of post-hatch holding time and subsequent early performance of broiler chicks and Turkey poults. British Poultry Science, 1993, 34: 111-120.
  42. Sklan D., Noy Y., Hoyzman A., Rozenboim I. Decreasing weight loss in the hatchery by feeding chicks and poults in hatching trays. The Journal of Applied Poultry Research, 2000, 9: 142-148.
  43. Viera S.L., Moran E.T., Jr. Effects of delayed placement and used litter on broiler yields. The Journal of Applied Poultry Research, 1999, 8: 75-81.
  44. Noy Y., Gyra A., Sklan D. The effect of early feeding on growth and small intestinal development in the posthatch poult. Poultry Sci., 2001, 80: 912-919.
  45. Bigot K., Mignon-Grasteau P., Picard M., Tesseraud S. Effects of delayed feed intake on body, intestine and muscle development in neonate broilers. Poultry Sci., 2003, 85: 781-788.
  46. Geyra A., Uni Z., Sklan D. The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. British Journal of Nutrition, 2001, 86: 53-61.
  47. Karadas F., Surai P.F., Sparks N.H. Changes in broiler chick tissue concentrations of lipid-soluble antioxidants immediately post-hatch. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 2011, 160: 68-71 CrossRef
  48. Surai P.F., Noble R.C., Speake B.K. Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochimica et Biophysica Acta, 1996, 1304: 1-10.
  49. Surai P.F., Fisinin V.I., Karadas F. Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Animal Nutrition, 2016, 2: 1-11.
  50. Surai P.F., Fisinin V.I. Natural antioxidants in hens' embryogenesis and antistress defense in postnatal development. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2013, 2: 3-18 CrossRef
  51. Surai P.F., Fisinin V.I. Antioxidant-prooxidant balance in the intestine: applications in chick placement and pig weaning. J. Veter. Sci. Med., 2015, 3(1): 16.
  52. Amarasekera M., Prescott S.L., Palmer D.J. Nutrition in early life, immunoprogramming and allergies: the role of epigenetics. Asian Pacific Journal of Allergy and Immunology, 2013, 31: 175-182.
  53. Blount J.D., Metcalfe N.B., Arnold K.E., Surai P.F., Devevey G.L., Monaghan P. Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the zebra finch. Proceedings of the Royal Society of London. Series B, Biological sciences, 2003, 270: 1691-1696.
  54. Champagne F.A., Rissman E.F. Behavioral epigenetics: a new frontier in the study of hormones and behavior. Hormones and Behavior, 2011, 59: 277-278 CrossRef
  55. Goerlich V.C., Natt D., Eefwing M., Macdonald B., Jensen P. Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Hormones and Behavior, 2012, 61: 711-718 CrossRef
  56. Sell J.L. Recent developments in vitamin E nutrition of turkeys. Animal Feed Science and Technology, 1996, 60: 229-240.
  57. Applegate T.J., Sell J.L. Effect of dietary linoleic to linolenic acid ratio and vitamin E supplementation on vitamin E status of poults. Poultry Sci., 1996, 75: 881-890.
  58. Marusich W.L., Deritter E., Ogrinz E.F., Keating J., Mitrovic M., Bunnell R.H. Effect of supplemental vitamin E on control of rancidity in poultry meat. Poultry Sci., 1975, 54: 831-844.
  59. Soto-Salanova M.F., Sell J.L. Influence of supplemental dietary fat on changes in vitamin E concentration in livers of poults. Poultry Sci., 1995, 74: 201-204.
  60. Soto-Salanova M.F., Sell J.L. Efficacy of dietary and injected vitamin E for poults. Poultry Sci., 1996, 75: 1393-1403.
  61. Soto-Salanova M.F. Vitamin E in young turkeys: a reassessment of the requirement. In: Retrospective Theses and Dissertations. Iowa State University, 1998. Available http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=11984&context=rtd. No date.
  62. Mezes M. Effect of vitamin E treatment on early postnatal changes of vitamin E status of chicken. Acta Veterinaria Hungarica, 1994, 42: 477-480.
  63. Georgieva N.V., Stoyanchev K., Bozakova N., Jotova I. Combined effects of muscular dystrophy, ecological stress, and selenium on blood antioxidant status in broiler chickens. Biol. Trace Elem. Res., 2011, 142: 532-545 CrossRef
  64. Balnave D., Gorman I. A role for sodium bicarbonate supplements for growing broilers at high temperatures. World's Poultry Science Journal, 1993, 49: 236-241.
  65. Gore A.B., Qureshi M.A. Enhancement of humoral and cellular immunity by vitamin E after embryonic exposure. Poultry Sci., 1997, 76: 984-991.
  66. Fisinin V.I., Surai P.F. Gut immunity in birds: facts and thinking. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 4: 3-25 CrossRef
  67. Surai K.P., Surai P.F., Speake B.K., Sparks N.H.C. Antioxidant-prooxidant balance in the intestine: Food for thought. 1. Prooxidants. Nutritional Genomics and Functional Foods, 2003, 1: 51-70.
  68. Surai K.P., Surai P.F., Speake B.K., Sparks N.H.C. Antioxidant-prooxidant balance in the intestine: Food for thought. 2. Antioxidants. Current Topics in Neutraceutical Research, 2004, 2: 27-46.
  69. McLean J.A., Karadas F., Surai P.F., Speake B.K., McDevitt R.M., Sparks N.H.C. Lipid-soluble and water-soluble antioxidant activities of the avian intestinal mucosa at different sites along the intestinal tract. Comparative Biochemistry and Physiology, 2005, 141(B): 366-372.
  70. Surai P.F., Fotina A.A., Fotina T.I.  Trudy Sumskogo natsional'nogo agrarnogo universiteta, 2012, 7: 58-61 (in Russ.).
  71. Velichko O.A., Shabaldin S.A., Surai P.F. Ptitsa i ptitseprodukty, 2013, 4: 42-45 (in Russ.).
  72. Velichko O.A., Surai P.F. Effect of an antistress composition supplied with water on chick growth and development. Proc. XIV European Poultry Conference. EPC, Stavanger, Norway, 2014: 551.
  73. Guerre P. Worldwide mycotoxins exposure in pig and poultry feed formulations. Toxins (Basel), 2016, 8(12): E350.
  74. Murugesan G.R., Ledoux D.R., Naehrer K., Berthiller F., Applegate T.J., Grenier B., Phillips T.D., Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci., 2015, 94: 1298-1315 CrossRef
  75. Escrivá L., Font G., Manyes L. In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem. Toxicol., 2015, 78: 185-206 CrossRef
  76. Ghareeb K., Awad W.A., Böhm J., Zebeli Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J. Appl. Toxicol., 2015, 35: 327-337 CrossRef
  77. Wu Q.H., Wang X., Yang W., Nüssler A.K., Xiong L.Y., Kuca K., Dohnal V., Zhang X.J., Yuan  Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch. Toxicol., 2014, 88: 1309-1326 CrossRef
  78. Sorrenti V., Di Giacomo C., Acquaviva R., Barbagallo I., Bognanno M., Galvano F. Toxicity of ochratoxin a and its modulation by antioxidants: a review. Toxins (Basel), 2013, 5: 1742-1766 CrossRef
  79. Doi K., Uetsuka K. Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int. J. Mol. Sci., 2011, 12: 5213-5237 CrossRef
  80. Sheu M.L., Shen C.C., Chen Y.S., Chiang C.K. Ochratoxin A induces ER stress and apoptosis in mesangial cells via a NADPH oxidase-derived reactive oxygen species-mediated calpain activation pathway. Oncotarget, 2017, 8: 19376-19388 CrossRef
  81. Malir F., Ostry V., Pfohl-Leszkowicz A., Malir J., Toman J. Ochratoxin A: 50 years of research. Toxins (Basel), 2016, 8(7): E191 CrossRef
  82. Koszegi T., Poór M. Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins (Basel), 2016, 8(4): 111 CrossRef
  83. Vettorazzi A, van Delft J, López de Cerain A. A review on ochratoxin A transcriptomic studies. Food Chem. Toxicol., 2013, 59: 766-783 CrossRef
  84. Yang L., Yu Z., Hou J., Deng Y., Zhou Z., Zhao Z., Cui J. Toxicity and oxidative stress induced by T-2 toxin and HT-2 toxin in broilers and broiler hepatocytes. Food Chem. Toxicol., 2016, 87: 128-137 CrossRef
  85. Wu Q.H., Wang X., Yang W., Nüssler A.K., Xiong L.Y., Kuca K., Dohnal V., Zhang X.J., Yuan Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch. Toxicol., 2014, 88: 1309-1326 CrossRef
  86. Rezar V., Frankic T., Narat M., Levart A., Salobir J. Dose-dependent effects ofT-2 toxin on performance, lipid peroxidation, and genotoxicity in broiler chickens. Poultry Sci., 2007, 86: 1155-1160.
  87. Mishra S., Dwivedi P.D., Pandey H.P., Das M. Role of oxidative stress in deoxynivalenol induced toxicity. Food Chem. Toxicol., 2014, 72: 20-29 CrossRef
  88. Li D., Ye Y., Lin S., Deng L., Fan X., Zhang Y., Deng X, Li Y, Yan H., Ma Y. Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: cell-cycle arrest, oxidative stress, and apoptosis. Environmental Toxicology and Pharmacology, 2014, 37(1): 141-149 CrossRef
  89. Osselaere A., Santos R., Hautekiet V., De Backer P., Chiers K., Ducatelle R., Croubels S. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE, 2013, 8(7): e69014 CrossRef
  90. Wang X., Wu Q., Wan D., Liu Q., Chen D., Liu Z., Martínez-Larrañaga M.R., Martínez M.A., Anadón A., Yuan Z. Fumonisins: oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch. Toxicol., 2016, 90: 81-101 CrossRef
  91. Garbetta A., Debellis L., De Girolamo A., Schena R., Visconti A., Minervini F. Dose-dependent lipid peroxidation induction on ex vivo intestine tracts exposed to chyme samples from fumonisins contaminated corn samples. Toxicology in Vitro, 2015, 29: 1140-1145 CrossRef
  92. Stockmann-Juvala H., Savolainen K. A review of the toxic effects and mechanisms of action of fumonisin B1. Human & Experimental Toxicology, 2008, 27(11): 799-809 CrossRef
  93. Liu Y., Wang W. Aflatoxin B1 impairs mitochondrial functions, activates ROS generation, induces apoptosis and involves Nrf2 signal pathway in primary broiler hepatocytes. Animal Science Journal, 2016, 87(12): 1490-1500 CrossRef
  94. Ma Q., Li Y., Fan Y., Zhao L., Wei H., Ji C., Zhang J. Molecular mechanisms of lipoic acid protection against Aflatoxin B1-induced liver oxidative damage and inflammatory responses in broilers. Toxins (Basel), 2015, 7: 5435-5447 CrossRef
  95. Shannon T.A., Ledoux D.R., Rottinghaus G.E., Shaw D.P., Dakovic A., Markovic M. The efficacy of raw and concentrated bentonite clay in reducing the toxic effects of aflatoxin in broiler chicks. Poultry Sci., 2017, 96: 1651-1658 CrossRef
  96. Zadeh M.H., Shahdadi H. Nanocellulose coated with various free fatty acids can adsorb fumonisin B1, and decrease its toxicity. Colloids Surf B Biointerfaces, 2015, 134: 26-30 CrossRef
  97. Nedeljkovic-Trailovic J., Trailovic S., Resanovic R., Milicevic D., Jovanovic M., Vasiljevic M. Comparative investigation of the efficacy of three different adsorbents against OTA-induced toxicity in broiler chickens. Toxins (Basel), 2015, 7: 1174-1191.
  98. Hahn I., Kunz-Vekiru E., Twaruzek M., Grajewski J., Krska R., Berthiller F. Aerobic and anaerobic in vitro testing of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2015, 32(6): 922-933 CrossRef
  99. Alpsoy L., Yalvac M.E. Key roles of vitamins A, C, and E in aflatoxin B1-induced oxidative stress. Vitam. Horm., 2011, 86: 287-305.
  100. Latypova E.N. Effektivnost' ispol'zovaniya antistressovykh preparatov «Vitaminotsid» i «Medzhik Antistress Miks» v yaichnom ptitsevodstve. Avtoreferat kandidatskoi dissertatsii. [Efficiency of Vitaminocid and Magic Antistress Mix application in commercial egg production. PhD Thsis]. Orenburg, 2014. Available http://www.feedfood.com.ua/download/Latipova_PhD.pdf. No date (in Russ.).
  101. Latipova E.N., Shatskikh E.V., Surai P.F. Effect of an antistress dietary supplement on the reproductive performance of layer breeders. Proc. XXV World’s Poultry Congress. Beijing, China, 2016: 57.
  102. Shatskikh E.V., Latipova E.N., Surai P.F. Supplying an antistress composition with water to decrease negative consequences of commercially-relevant stresses in rearing birds. Proc. XXV World’s Poultry Congress. Beijing, China, 2016: 58.
  103. Surai P.F., Fisinin V.I., Shatskikh E.V., Latypova E.N. Sfera: tekhnologii, korma, veterinariya, 2016, 5(2): 40-43 (in Russ.).
  104. Shatskikh E.V., Latipova E.N., Fisinin V.I., Surai P.F. Epigenetic effects of an antioxidant composition in layer breeder diet. Proc. XXV World’s Poultry Congress. Beijing, China, 2016, p. 58.
  105. Fisinin V.I., Shatskikh E.V., Latypova E.N., Surai P.F. Ptitsa i ptitseprodukty, 2016, 1: 29-33 (in Russ.).
  106. Gaponov I.V., Fotina T.I., Surai P.F. Svinovodstvo Ukrainy, 2012, 13: 6-9 (in Russ.).
  107. Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94: 329-354.
  108. Lambert GP. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J. Anim. Sci., 2009, 87(14 Suppl): E101-108 CrossRef
  109. Clark A, Mach N. The crosstalk between the gut microbiota and mitochondria during exercise. Front. Physiol., 2017, 8: 319 CrossRef
  110. Gyuraszova M, Kovalcikova A, Gardlik R. Association between oxidative status and the composition of intestinal microbiota along the gastrointestinal tract. Med. Hypotheses, 2017, 103: 81-85 CrossRef

back