doi: 10.15389/agrobiology.2017.4.795eng

UDC 636.1:591.111.1:57.043



T.S. Shevchenkо

All-Russian Research Institute of Radiology and Agroecology, Federal Agency of Scientific Organizations, 109 km, Kievskoe sh., Obninsk, Kaluga Province, 239032 Russia, e-mail,

The authors declare no conflict of interests


Shevchenkо T.S.


Received April 25, 2016


An important diagnostic test to reveal diseases in agricultural animals is to define the content of formed elements, including neutrophils. Qualitative and quantitative neutrophil characteristics are essential in health assessment and in case of radiation damage of animals due to the radiation induced death of granulocyte progenitors in the bone marrow. Worth noting is a small number of publications on the state of neutrophils in exposed animals, not only in agricultural but also in the laboratory ones. In particular, the literature practically lacks data on the optical properties of neutrophils and the effects on them of the radiation factor. Therefore, the aim of the paper was to study the optical properties of these cells isolated from the peripheral blood of horses exposed to total external γ-radiation. The absorbancy of horse neutrophil suspension was determined on a spectrophotometer СF-26 (Russia) at 600 nm and optical path length of 1 cm. The animal blood was taken from the jugular vein prior to irradiation and then on days 1, 3, 5, 7, 10, 15, 20, 25 and 30 after irradiation. The neutrophil suspension was obtained from the peripheral blood by urografin density gradient centrifugation with a specific density of 1.077 g/cm3. A group of four horses served as control, these were kept in the same conditions as 4 groups of experimental animals, 5 horses each. The latter were exposed to total external γ-radiation at doses of 2, 3, 4 and 5 Gy. The value of the optical density of neutrophil suspension calculated for 105 cells per 1 ml, which averages 0.572±0.023 relative units, was found to be practically unchangeable in horses exposed to external γ-radiation in a wide dose range. This is the evidence of stability of the optical properties of neutrophil granulocytes in animals with a radiation damage, which allows photometric investigations of these cells in irradiated horses. The photometric analysis of the suspension of the isolated neutrophils has revealed the following regularities. The optical density of cells in intact horses was 0.235+0.032 relative units. In the early period of radiation pathology in all groups of the treated animals the value of the neutrophil optical density increased 2.1-2.8 times, then sequentially decreased and increased in the latent period on days 5-10 and fell drastically (up to 10-12 times) in the main phase of radiation sickness on days 20-30. The horses exposed to γ-radiation at 5 Gy showed noticeable reduction in the parameter (18 times lower) on day 10. The investigations have shown that total exposure to γ-radiation in a wide dose range results in changes of optical properties of suspension of the isolated neutrophils which is consistent with the dynamics of the neutrophil content in the peripheral blood of horses.

Keywords: horses, total external exposure to γ-radiation, peripheral blood, neutrophills, optical density, neutrophil content.


Full article (Rus)

Full text (Eng)



  1. Kondrakhin I.P., Arkhipov A.V., Levchenko V.I. Metody veterinarnoi klinicheskoi laboratornoi diagnostiki [Methods of veterinary clinic laboratory diagnostics]. Moscow, 2004 (in Russ.).
  2. Mishanin Yu.F., Mishanin M.Yu. Prakticheskaya veterinariya [Practical veterinary medicine]. Rostov-na-Donu, 2002 (in Russ.).  
  3. Nazarenko G.I., Kishkun A.A. Klinicheskaya otsenka rezul'tatov laboratornykh issledovanii [Clinical evaluation of laboratory results]. Moscow, 2005 (in Russ.).
  4. Kishkun A.A. Rukovodstvo po laboratornym metodam diagnostiki [Methods of laboratory diagnostics — guidance]. Moscow, 2013 (in Russ.).
  5. Pinegin B.V., Mayanskii A.N. Immunologiya, 2007, 28(6): 374-382 (in Russ.).
  6. Yarilin A.A. Immunologiya [Immunology]. Moscow, 2010 (in Russ.).
  7. Garcia-Garcia E. Molecular mechanisms of phagocytosis. Landes Vioscience, Georgetown, Texas, 2005.
  8. Robinson J.M. Reactive oxygen species in phagocytic leukocytes. Histochemistry and Cell Biology, 2008, 130(2): 281-297.
  9. Segal A.W. How neutrophils kill microbes. Ann. Rev. Immunol., 2006, 23: 197-223.
  10. Medical Immunology. V. Gabriel (ed.). Taylor & Francis, London, 2007.
  11. Hicks A.M., Willington M.C., Du W. Effector mechanism of the anticancer immune responses of macrophages in SR/CR mice. Cancer Immunity, 2006, 6: 1-9.
  12. Abakumova T.V., Antoneeva I.I., Gening T.P., Gening S.O., Dolgo-
    va D.R., Fomina A.V. Patologicheskaya fiziologiya i eksperimental'naya terapiya, 2014, 4: 86-90 (in Russ.).
  13. Dolgushin I.I., Savochkina A.Yu. Allergologiya i immunologiya, 2015, 2: 210-212 (in Russ.).
  14. Zh1pixou J., Perelman J.M., Kolosov V.P., Zh1pixou X. Neutrophil elastase induces MUC5AC secretion via protease activated receptor 2. Molecular and Cellular Biochemistry, 2013, 377(1-2): 75-85 CrossRef
  15. Kupchik Y.M., Barchad-Avitzur O., Ben-Chaim Y., Parnas L., Parnas H., Wess J. A novel fast mechanism for GPCR-mediated signal transduction – control of neurotransmitter release. Journal of Cell Biology, 2011, 192(1): 137-151 CrossRef 
  16. Wang N., De Bock M., Decrock E., Bol M., Gadicherla A.A., Leybaert L., Vinken M., Rogiers V., Bukauskas F.F., Bultynck G. Paracrine signaling through plasma membrane hemichannels.1pix Biochimica et Biophisica Acta. Biomembranes, 2013, 1828(1): 35-50 CrossRef
  17. Baroja-Mazo A., Barbera-Cremades M., Pelegrin P. The participation of plasma membrane hemichannels to purinergic signaling. Biochimica et Biophisica Acta. Biomembranes, 2013, 1828(1): 79-93 CrossRef
  18. Nesterova I.V., Shvydchenko I.N., Romenskaya V.A. Allergologiya i immunologiya, 2008, 9(4): 432-436 (in Russ.).
  19. Cassatella M.A., Mosna F., Micheletti A. Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem. Cells, 2011, 29(6): 1001-1011.
  20. Khaitov R.M. Immunologiya [Immunology]. Moscow, 2011 (in Russ.).
  21. Diebold B.A., Bokoch G.M. Rho GTPase and the control of the oxidative burst in polymorphonuclear leukocytes. Current Topics of Microbiology and Immunology, 2005, 291: 91-111.
  22. Fernandes M.J., Rollet-Labelle E., Pare G. CD11b associates with high-density, detergent resistant membranes in human neutrophils. Biochem. J., 2006, 393: 351-359.
  23. Kudryashov Yu.B. Radiatsionnaya biofizika (ioniziruyushchie izlucheniya) [Radiobiophysics (ionizing radiation)]. Moscow, 2004 (in Russ.).
  24. Akleev A.A., Grebenyuk A.N., Gluminina O.A. Vestnik Chelyabinskogo gosudarstvennogo universiteta, Biologiya, 2013, 7(298): 91-93 (in Russ.).
  25. Grebenyuk A.N. Sostoyanie neitrofilov pri radiatsionnykh vozdeistviyakh. Avtoreferat doktorskoi dissertatsii. [Neutrophils affected by radiation. DSci. Thesis]. St. Petersdurg, 2002 (in Russ.).
  26. Isamov N.N., Isamov N.N. (Jr.) Radiobiologiya i radioekologiya loshadei /Pod redaktsiei R.M. Aleksakhina [Radiobiology and radioecology of horses. R.M. Aleksakhin (ed.)]. Obninsk, 2009 (in Russ.).
  27. Meo S.A., Al Dress A.M., Zadi S.Z., Al Damon S., Al-Tuwauri A.S. Hazards of X-ray radiation on quantitative and phagocytic function of polymorphonuclear neutrophils in X-ray technicians. J. Occup. Health, 2006, 48: 88-92.
  28. Wilkins R.C., Wilkinson D., Macharaj H.P., Bellier P.V., Cybuiski M.B., McLean J.R. Differential apoptotic response to ionizing radiation in sub population of human white blood cells. Mutat. Res., 2002, 513(1-2): 27-36.
  29. Latifynia A., Vojgani M., Gharagozlou M.J., Sharifian R. Neutrophil finction (innate immunity) during ramadan. J. Auub. Med. Coll. Abbottabad, 2009, 21(4): 111-115.
  30. Latifynia M.Y., Kalamzadeh A., Abofazeli T., Nuraie M., Khransarii N. Phagocyte finctions of human subjects living in high level of natural radiation areas in Iran. J. Auub. Med. Coll. Abbottabad, 2012, 24(3-4): 177-179.
  31. Shevchenko T.S., Shevchenko A.S. [Photometric parameters and protein content in blood cells of intact farm animals and the individuals exposed to radiation]. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 1999, 4: 114-118 (in Russ.).
  32. Shevchenko T.S. Method for isolation of cellular populations from peripheral blood of farm animals. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2007, 6: 123-126 (in Russ.).
  33. Gil-Villa A.M., Norling L.V., Serhan C.N., Cordero D. Aspirin triggered-lipoxin A(4) reduces the adhesion of human polymorphonuclear neutrophils to endothelial cells initiated by preeclamptic plasma. Prostaglandins Leukot. Essent. Fatty Acids, 2012, 87(4-5): 127-134 CrossRef
  34. Overbeek S.A., Kleinjan M., Henricks P.A.J., Kamp V.M., Georgiou N.A., Garssen J., Kraneveldand A.D., Folkerts G. Chemo-attractant N-acetyl proline-glycine-proline induces CD11b/CD18-dependent neutrophil adhesion. Biochimica et Biophisica Acta, 2012, 1830(1): 2188-2193.
  35. Maeshima Y., Makino H.Molecular mechanism of cell injury. Contrib. Nephrol., 2003, 139: 32-43.
  36. Luo H.R., Loison F. Constitutive neutrophil apoptosis mechanisms and regulation. J. Haematology, 2008, 83(4): 288-295.
  37. Mayadas T.N., Tsokos G.C., Tsuboi N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation, 2009, 120(20): 2012-2024.
  38. Zhavoronok T.V., Stepovaya Ye.A., Ryazantseva N.V., Petina G.V., Starikov Yu.V., Ageeva T.S. Influence of oxidative stress on redox-state and peripheral blood heterophilic leukocytes apoptotic program realization. European Journal of Natural History, 2007, 6: 63-64. 
  39. Brinkman V., Rechard U., Goosmann C. Neutrophil extracellular traps kill bacteria. Science, 2004, 303: 1532-1535.
  40. Brinkman V., Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nature Rev., 2007, 5: 577-582.
  41. Fuches T.A., Abed U., Goosmann C. Novel cells death program leads to neutrophil extracellular traps. J. Cell Biol., 2007, 176(2): 231-241.
  42. Jenne C.N. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host and Microbe, 2013, 13: 169-180.
  43. Gupta A.K., Joshi M.B., Philippova M. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett., 2010, 584: 3193-3197.