doi: 10.15389/agrobiology.2017.4.785eng

UDC 636.2:575.174.015.3:578.2:577.2.08:51-76

Acknowledgements:
The authors thank L.M. Fedorova, PhD, for detailed comments and helpful discussion of the paper which significantly influenced our interpretation of the obtained data.

 

EXPRESSION of NK-lysin, blvr, ifn-a AND BLOOD CELL POPULATIONS
IN COWS INFECTED BY BOVINE LEUKEMIA VIRUS

G.Yu. Kosovskii1, V.I. Glazko1, 2, S.N. Koval’chuk1, A.L. Arkhipova1,
T.T. Glazko1, 2

1Center for Experimental Embryology and Reproductive Biotechnology,
Federal Agency of Scientific Organizations, 12/4, ul. Kostyakova, Moscow,
127422 Russia, e-mail vigvalery@gmail.com, gkosovsky@mail.ru,
s.n.kovalchuk@mail.ru, tglazko@rambler.ru (corresponding author);
2K.A. Timiryazev Russian State Agrarian University—Moscow Agrarian Academy,
49, ul. Timiryazevskaya, Moscow, 127550 Russia

The authors declare no conflict of interests

ORCID:

Kosovskii G.Yu.
orcid.org/0000-0003-3808-3086

Koval’chuk S.N.
orcid.org/0000-0002-5029-0750

Glazko V.I.
orcid.org/0000-0002-8566-8717

Glazko T.T.
orcid.org/0000-0002-3879-6935

Received May 5, 2017

 

At now, it is impossible to prevent or control the spread of retroviral infections, in particular, bovine leukemia virus (BLV). The existing methods of vaccination and detection of infected animals remain insufficient (G. Gutiérrez et al., 2014; M. Nishiike et al., 2016) which necessitates further investigations of the interactions between pathogen and host organism. Previously, we obtained evidence that a common characteristic for BLV infected animals with moderate and high leukocytosis was the increase in platelets, and in cows with a pronounced leukocytosis the decrease in the number of neutrophils (G.Yu. Kosovovskii et al. 2017). In order to assess the relationship between BLV infection in animals, the ratio of cell populations in the peripheral blood and the expression of the genes, encoding the BLV receptor (blvr gene), a comparative analysis of antivirus protection protein, interferon alpha (INFΑ), and effector protein of innate immunity, NK-lysine, was carried out in two groups of cows that differed in origin and farm conditions. In result, the evidences were obtained that cows from two farms differed mainly in the amount of peripheral blood neutrophils and platelets. However, in both farms the BLV infected animals had the reduced gene expression of NK-lysin and an increased number of platelets compared to cows free from infection. Relatively increased expression of blvr was observed in BLV infected cows, reflecting, apparently, the increase in the proportion of the young forms of B-lymphocytes (M. Lavanya et al., 2008). On the basis of the own obtained findings and literature data the scheme is proposed of the influence of BLV on the expression of NK-lysin and the suppression of apoptosis. As per the scheme, viral protein TAX (a transcription activator) induces the expression of host tnf-a gene (M. Arainga et al., 2012) which, in turn, activates the Treg regulators of immune homeostasis (L.Y. Chang et al., 2015); Treg produces TGF-β (transforming growth factor beta), TGF-β inhibits the proliferation and activity of T-killers and NK-cells, the producers of NK-lysine, and increases the number and activity of platelets which inhibits the apoptosis (K. Ohira et al., 2016; S.C. Tao et al., 2016). The proposed scheme suggested that the key event in pathogenesis, induced by BLV, is the effect on the innate immune system.

Keywords: bovine leukemia virus, granulocytes, agranulocytes, NK-lysine, the receptor of bovine leukemia virus, interferon-alpha, gene expression, innate immunity.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Liu J., Cao X. Cellular and molecular regulation of innate in?ammatory responses. Cellular and Molecular Immunology, 2016, 13: 711-721 CrossRef
  2. Ott S.L., Johnson R., Wells S.J. Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev. Vet. Med., 2003, 61: 249-262.
  3. Nishiike M., Haoka M., Doi T., Kohda T., Mukamoto M. Development of a preliminary diagnostic measure for bovine leukosis in dairy cows using peripheral white blood cell and lymphocyte counts. J. Vet. Med. Sci.,2016, 78(7): 1145-1151 CrossRef
  4. Ikebuchi R., Konnai S., Okagawa T., Nishimori A., Nakahara A., Murata S., Ohashi K. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J. Gen. Virol., 2014, 95(Pt 8): 1832-1842 CrossRef
  5. Florins A., de Brogniez A., Elemans M., Bouzar A.B., François C., Reichert M., Asquith B., Willems L. Viral expression directs the fate of B cells in bovine leukemia virus-infected sheep. J. Virol., 2012, 86(1): 621-624 CrossRef
  6. Kosovskii G.Yu., Glazko V.I., Koval'chuk S.N., Glazko T.T. Changes in leukocyte
    and erythrocyte blood profile and parameters under a combined Anaplasma marginale and bovine leukemia virus infection in cattle. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2017, 52(2): 391-400 CrossRef
  7. Chen J., Yang C., Tizioto P.C., Huang H., Lee M.O.K., Payne H.R., Lawhon S.D., Schroeder F., Taylor J.F., Womack J.E. Expression of the bovine NK-lysin gene family and activity against respiratory pathogens. PLoS ONE, 2016, 11(7): e0158882 CrossRef
  8. Lavanya M., Kinet S., Montel-Hagen A., Mongellaz C., Battini J.L., Sitbon M., Taylor N. Cell surface expression of the bovine leukemia virus-binding receptor on B and T lymphocytes is induced by receptor engagement. J. Immunol., 2008, 181(2): 891-898 CrossRef
  9. Boyette L.B., Macedo C., Hadi K., Elinoff B.D., Walters J.T., Ramaswami B., Chalasani G., Taboas J.M., Lakkis F.G., Metes D.M. Phenotype, function, and differentiation potential of human monocyte subsets. PLoSONE, 2017, 12(4): e0176460 CrossRef
  10. Kosovskii G.Yu., Sotnikova E.A., Mudrik N.N., Cuong V.C., Toan T.X., Hoan T.X., Glazko V.I. Veterinariya, 2013, 8: 58-61 (in Russ.).
  11. Swenson C.L., Erskine R.J., Bartlett P.C. Impact of bovine leukemia virus infection on neutrophil and lymphocyte concentrations in dairy cattle. J. Am. Vet. Med. Assoc., 2013, 243(1): 131-135 CrossRef
  12. Khudhair Y.I., Hasso S.A., Yaseen N.Y., Al-Shammari A.M. Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg. Microbes Infect., 2016, 5: e56 CrossRef
  13. Della Libera A.M.M.P., de Souza F.N., Batista C.F., Santos B.P., de Azevedo L.F.F, Sanchez E.M.R., Diniz S.A., Silva M.X., Haddad J.P., Blagitz M.G. Effects of bovine leukemia virus infection on milk neutrophil function and the milk lymphocyte profile. Vet. Res., 2015, 46: 2 CrossRef
  14. Nishiike M., Haoka M., Doi T., Kohda T., Mukamoto M. Development of a preliminary diagnostic measure for bovine leukosis in dairy cows using peripheral white blood cell and lymphocyte counts. J. Vet. Med. Sci., 2016, 78(7): 1145-1151 CrossRef
  15. Moon J.H., Lim S., Jo K., Lee S., Seo S., Kim S. PINTnet: construction of condition-specific pathway interaction network by computing shortest paths on weighted PPI. BMC Syst. Biol., 2017, 11(Suppl 2): 15 CrossRef
  16. Glazko V.I., Kosovskii G.Yu., Koval'chuk S.N., Glazko T.T. Vestnik RAEN, 2015, 1: 75-81 (in Russ.).
  17. Rivera A., Siracusa M.C., Yap G.S., Gause W.C. Innate cell communication kick-starts pathogen-specific immunity. Nat. Immunol., 2016, 17(4): 356-363 CrossRef
  18. Gutiérrez G., Rodríguez S.M., de Brogniez A., Gillet N., Golime R., Bur-ny A., Jaworski J.P., Alvarez I., Vagnoni L., Trono K,. Willems L. Vaccination against d-retroviruses: the bovine leukemia virus paradigm. Viruses, 2014, 6(6): 2416-2427 CrossRef
  19. Tuettenberg A., Hahn S.A., Mazur J., Gerhold-Ay A., Scholma J., Marg I., Ulges A., Satoh K., Bopp T., Joore J., Jonuleit H. Kinome profiling of regulatory T cells: a closer look into a complex intracellular network. PLoS ONE,2016, 11(2): e0149193 CrossRef
  20. Suzuki S., Konnai S., Okagawa T., Ikebuchi R., Shirai T., Sunden Y., Mingala C.N., Murata S., Ohashi K. Expression analysis of Foxp3 in T cells from bovine leukemia virus infected cattle. Microbiol. Immunol., 2013, 57(8): 600-604 CrossRef
  21. Suzuki S., Konnai S., Okagawa T., Ikebuchi R., Nishimori A., Kohara J., Mingala C.N., Murata S., Ohashi K. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection. Vet. Immunol. Immunopathol., 2015, 163(3-4): 115-124 CrossRef
  22. Ohira K., Nakahara A., Konnai S., Okagawa T., Nishimori A., Maekawa N., Ikebuchi R., Kohara J., Murata S., Ohashi K. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immun. Inflamm. Dis., 2016, 4(1): 52-63 CrossRef
  23. Arainga M., Takeda E., Aida Y. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics, 2012, 13: 121 CrossRef
  24. Aida Y., Murakami H., Takahashi M., Takeshima S.-N. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front. Microbiol., 2013, 4: 328 CrossRef
  25. Chang L.Y., Lin Y.C., Chiang J.M., Mahalingam J., Su S.H., Huang C.T., Chen W.T., Huang C.H., Jeng W.J., Chen Y.C., Lin S.M., Sheen I.S., Lin C.Y. Blockade of TNF-a signaling benefits cancer therapy by suppressing effector regulatory T cell expansion. Oncoimmunology, 2015, 4(10): e1040215.
  26. Pierini A, Strober W, Moffett C, Baker J, Nishikii H, Alvarez M, Pan Y, Schneidawind D, Meyer E, Negrin RS. TNF-a priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood, 2016, 128(6): 866-871 CrossRef
  27. Riise R.E., Bernson E., Aurelius J., Martner A., Pesce S., Chiesa M.D., Marcenaro E., Bylund J., Hellstrand K., Moretta L., Moretta A., Thoren F.B. TLR-stimulated neutrophils instruct NK cells to trigger dendritic cell maturation and promote adaptive T cell responses.  J. Immunol., 2015, 195: 1121-1128 CrossRef
  28. Amano K., Hirayama M., Azuma E., Iwamoto S., Keida Y., Komada Y. Neutrophils induced licensing of natural killer cells. Mediators of In?ammation, 2015, 2015: Article ID 747680 CrossRef
  29. Ueda R., Narumi K., Hashimoto H., Miyakawa R., Okusaka T., Aoki K. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients. Cancer Medicine, 2016, 5(1): 49-60 CrossRef
  30. Pieterse E., Rother N., Yanginlar C., Hilbrands L.B., van der Vlag J. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front. Immunol., 2016, 7: 484 CrossRef
  31. Tao S.C., Yuan T., Rui B.Y., Zhu Z.Z., Guo S.C., Zhang C.Q. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics, 2017, 7(3): 733-750 CrossRef

back