doi: 10.15389/agrobiology.2017.4.731eng

UDC 636.5:619:615.371:[573.6.086.83+577.21

The authors thank A.D. Solov’eva and T.V. Gasanova for the assistance in constructing recombinant antigens. Supported by Russian Science Foundation, a priority program for fundamental research (grant № 14-24-00007).



O.A. Kondakova, E.A. Trifonova, M.V. Arkhipenko, N.A. Nikitin,
O.V. Karpova, J.G. Atabekov

M.V. Lomonosov Moscow State University, Biological Faculty, str. 12, 1, Leninskie gory, Moscow, 119234 Russia, e-mail (corresponding author)

The authors declare no conflict of interests


Kondakova O.A.

Nikitin N.A.

Trifonova E.A.

Karpova O.V.

Arkhipenko M.V. 0000-0002-5575-602X

Atabekov J.G.

Received April 27, 2017


Avian influenza is an infectious viral disease that affects various species of birds, including poultry (chicken, turkeys, ducks and geese). Vaccination is a key strategy in the prevention of epizootics and epidemics of influenza. Now, the actual problem is the development of rapid, safe and effective methods for the production of avian flu vaccines. The using of recombinant flu antigen is a promising approach for creating universal, safe and effective poultry flu vaccines. To increasing of low immunogenicity of recombinant antigens plant viruses and virus-like particles can be applied. We have previously shown that spherical particles (SPs) with unique adsorption property and immunostimulating activity. Here we design the candidate vaccine against the avian flu virus (H5N1). The complexes containing the antigenic determinants of the avian flu virus — hemagglutinin (HA) and the extracellular domain of the M2 matrix protein (M2e) presented on the surface of SPs were developed. By indirect immunofluorescence microscopy the specific antigenic activity of recombinant proteins adsorbed on the SPs surface were demonstrated. The SPs—HA-M2e (SPs—HA62/284-М2е) complexes were highly immunogenic. The candidate vaccine induced a strong humoral immune response to both antigenic determinants of avian flu A virus. HA and M2e adsorption on the SPs allowed a 10-fold increase in the production of blood antibodies to antigens in immunized animals. The advantage of this approach for the vaccine development is high efficiency based on the stability and adjuvant activity of SPs, safety and low cost of using plant viruses. Obtaining veterinary vaccines based on structurally modified plant viruses allows the creation of marker veterinary vaccines. Development and creation of marker vaccines is extremely important for the recovery of the poultry population in agro-industrial complexes. The proposed vaccine can be considered as a candidate recombinant vaccine against avian influenza virus.

Keywords: plant viruses, vaccines, spherical particles, influenza virus, recombinant proteins.


Full article (Rus)

Full text (Eng)



  1. Nikitin N., Petrova E., Trifonova E., Karpova O.  Influenza virus aerosols in the air and their infectiousness. Adv.Virol., 2014, 2014: 1-6 CrossRef
  2. Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. Available No date.
  3. Huber V.C. Influenza vaccines: from whole virus preparations to recombinant protein technology. Expert Rev. Vaccines, 2014, 13(1): 31-42 CrossRef  
  4. Treanor J.J., Wilkinson B.E., Masseoud F., Hu-Primmer J., Battag-lia R., O’Brien D., Wolff M., Rabinovich G., Blackwelder W., Katz J.M. Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine, 2001, 19(13-14): 1732-1737 CrossRef
  5. Nicholson K.G., Colegate A.E., Podda A., Stephenson I., Wood J., Ypma E., Zambon M.C. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet, 2001, 357(9272): 1937-1943 CrossRef
  6. Blanchfield K., Kamal R.P., Tzeng W., Music N., Wilson J.R., Stevens J., Lipatov A.S., Katz J.M., York I.A. Recombinant influenza H7 hemagglutinins induce lower neutralizing antibody titers in mice than do seasonal hemagglutinins. Influenza Other Respir. Viruses, 2014, 8(6): 628-635 CrossRef
  7. Feng J., Zhang M., Mozdzanowska K., Zharikova D., Hoff H., Wun-
    ner W., Couch R.B., Gerhard W. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol. J., 2006, 6(3): 102 CrossRef
  8. Acosta-Ramírez E., Pérez-Flores R., Majeau N., Pastelin-Palac-
    ios R., Gil-Cruz C., Ramírez-Saldaña M., Manjarrez-Orduño N., Cervantes-Barragán L., Santos-Argumedo L., Flores-Romo L., Becker I., Isibasi A., Leclerc D., López-Macías C. Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus. Immunology, 2008, 124(2): 186-197 CrossRef
  9. Lico C., Chen Q., Santi L. Viral vectors for production of recombinant proteins in plants. J. Cell Physiol., 2008, 216(2): 366-377 CrossRef
  10. Manuel-Cabrera C.A., Márquez-Aguirre A., Rodolfo H.G., Ortiz-Lazareno P.C., Chavez-Calvillo G., Carrillo-Tripp M., Silva-Rosales L., Gutiérrez-Ortega A. Immune response to a potyvirus with exposed amino groups available for chemical conjugation. Virol. J., 2012, 9: 75 CrossRef
  11. Karpova O., Nikitin N., Chirkov S., Trifonova E., Sheveleva A., Lazareva E., Atabekov J. Immunogenic compositions assembled from tobacco mosaic virus-generated spherical particle platform and foreign antigens. J. Gen. Virol., 2012, 93(2): 400-407 CrossRef
  12. Trifonova E., Nikitin N., Gmyl A., Lazareva E., Karpova O., Atabekov J. Complexes assembled from TMV-derived spherical particles and entire virions of heterogeneous nature. J. Biomol. Struct. Dyn., 2014, 32(8): 1193-1201 CrossRef
  13. Lebel M.E., Daudelin J.F., Chartrand K., Tarrab E., Kalinke U., Savard P., Labrecque N., Leclerc D., Lamarre A. Nanoparticle adjuvant sensing by TLR7 enhances CD8+ T cell-mediated protection from Listeria monocytogenes infection. J. Immunol., 2014, 192(3): 1071-1078 CrossRef
  14. Denis J., Acosta-Ramirez E., Zhao Y., Hamelin M.E., Koukavica I., Baz M., Abed Y., Savard C., Paré C., Lopez Macias C., Boivin G., Leclerc D. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine, 2008, 26(27-28): 3395-4003 CrossRef
  15. Mathieu C., Rioux G., Dumas M.C., Leclerc D. Induction of innate immunity in lungs with virus-like nanoparticles leads to protection against influenza and Streptococcus pneumoniae challenge. Nanomedicine, 2013, 9(7): 839-848 CrossRef
  16. Atabekov I.G., Nikitin N.A., Karpova O.V. Vestnik Moskovskogo universiteta, Seriya 16. Biologiya, 2015, 4: 29-35 (in Russ.).
  17. Nikitin N.A., Trifonova E.A., Karpova O.V., Atabekov I.G. Vestnik Moskovskogo universiteta, Seriya 16. Biologiya, 2016, 3: 20-26 (in Russ.).
  18. Atabekov J., Nikitin N., Arkhipenko M., Chirkov S., Karpova O. Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles. J. Gen. Virol., 2011, 92(2): 453-456 CrossRef
  19. Nikitin N.A., Malinin A.S., Rakhnyanskaya A.A., Trifonova E.A., Karpova O.V., Yaroslavov A.A., Atabekov J.G. Use of a polycation spacer for noncovalent immobilization of albumin on the thermally modified virus particles. Polym. Sci. Ser. A, 2011, 53(11): 1026-1031 CrossRef
  20. Trifonova E.A., Nikitin N.A., Kirpichnikov M.P., Karpova O.V., Atabekov I.G. Vestnik Moskovskogo universiteta, Seriya 16, Biologiya, 2015, 4: 46-50 (in Russ.).
  21. Zayakina O.V., Arkhipenko M.V., Kozlovsky S.V., Nikitin N.A., Smirnov A.A., Susi P., Rodionova N.P., Karpova O.V., Atabekov J.G. Mutagenic analysis of Potato Virus X movement protein (TGBp1) and the coat protein (CP): in vitro TGBp1-CP binding and viral RNA translation activation. Mol. Plant Pathol., 2008, 9(1): 37-44 CrossRef 
  22. Nikitin N., Trifonova E., Evtushenko E.,Kirpichnikov M., Atabekov J., Karpova O. Comparative study of non-enveloped icosahedral viruses size. PLoS ONE, 2015, 10(11): e0142415 CrossRef
  23. Nikitin N., Trifonova E., Karpova O., Atabekov J. Examination of biologically active nanocomplexes by nanoparticle tracking analysis. Microsc. Microanal., 2013, 19(4): 808-813 CrossRef
  24. Song L., Nakaar V., Kavita U., Price A., Huleatt J., Tang J., Jacobs A., Liu G., Huang Y., Desai P., Maksymiuk G., Takahashi V., Umlauf S., Reiserova L., Bell R., Li H., Zhang Y., McDonald W.F., Powell T.J., Tussey L. Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PLoS ONE, 2008, 3(5): e2257 CrossRef
  25. Deng L., Cho K.J., Fiers W., Saelens X. M2e-based universal influenza A vaccines. Vaccines, 2015, 3(1): 105-136 CrossRef
  26. Trifonova E., Zenin V., Nikitin N., Yurkova M., Ryabchevskaya E., Putlyaev E., Donchenko E., Kondakova O., Fedorov A., Atabekov J., Karpo-
    va O. Study of rubella candidate vaccine based on a structurally modified plant virus. Antiviral Res., 2017, 144: 27-33 CrossRef