doi: 10.15389/agrobiology.2017.4.749eng

UDC 636.52/.58:591.1:577.121.9



E.A. Kolesnik1, M.A. Derkho2

1All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology, Ural Branch, Federal Agency of Scientific Organizations, 18А, ul. Sverdlovskii trakt, Chelyabinsk, 454106 Russia, e-mail (corresponding author);
2South Ural State Agrarian University, 13, ul. Gagarina, Troitsk, Chelyabinsk Province, 457100 Russia, e-mail

The authors declare no conflict of interests


Kolesnik E.A.

Derkho M.A.

Received January 8, 2017


Morphophysiological changes in body are influenced by environmental factors, what is more, the specific nature of the body reactions depends on the reaction rate and the stage of ontogenesis on which the physiological stimuli act (I. Schmalhausen, 1982). Also it is known that hormones participate in the regulation of metabolism, growth and development, in adaptation processes. We determined the concentration of high-density (HDL) and low density (LDL) lipoproteins directly involved in protein and lipid metabolism, total cholesterol (TCS), progesterone (P4), 17-hydroxyprogesterone (17-OHP), and cortisol in blood plasma of Hubbard F15 broiler chickens at early postnatal ontogenesis using four groups of poultry of the industrial herd of Chebarkulskaya Ptitsa LLC (Chelyabinsk Province, Russian Federation), 10 animals in each, aged 1, 7, 23 and 42 days, respectively. The role and interrelations of these substances in metabolism were assessed using Pearson's correlation analysis and factor analysis by the principal components method with Varimax factor rotation. Thus, in 1-day aged chicks, the integration of factors HDL, LDL, TCS, PP4 and cortisol involved in metabolic processes and metabolism regulations was noted with r-Pearson for P4 and Cortisol at r = 0.69, p = 0.027; for P4 and TCS at r = 0.82, p = 0.004; for HDL and LDL at r = 0.83, p = 0.003; and for HDL and TCS at r = -0.67, p = 0.033. On day 7 day, the principal components were progesterone and cortisol (r-Pearson for P4 and cortisol of r = 0.73, p = 0.016), and a cholesterol donation factor with LDL and TCS as the leading elements (r = 0.73, p < 0.05). In 23-day-old chicks the components which have become principal were HDL (r = 0.91, p < 0.05) and 17-OHP (r = 0.74, p < 0.05), which we attribute to growth, and also P4 (r = -0.88, p < 0.05) and cortisol (r = -0.77, p < 0.05) viewed as regulatory ones. On day 42 we revealed cholesterol donation factor (r-Pearson of r = 0.86, p = 0.002 for LDL and TCS) and an integral factor with the principal components HDL (r = 0.74, p < 0.05), P4 (r = 0.76, p < 0.05) and cortisol (r = 0.84, p < 0.05). Thus, here we described the age-specific features of interaction between lipoproteins and hormones of cholesterol—progesterone—cortisol system involved in broiler metabolism, and found out the change of principal components and functional relationships among the hormones of progesterone group and lipoproteins during early growth, which, according to our thought, makes a physiological basis for chicken performance under commercial poultry production. In further studies, it can be reasonable to assess the role of these hormones and metabolites in the control of reaction norm and adaptive capability of broilers, and the physiological cost of adaptation (i.e. adequate or pathological response) to reproduction at commercial farms.

Keywords: progesterone, 17-hydroxyprogesterone, cortisol, high density lipoproteins, low density lipoproteins, cholesterol, broiler chicks, early ontogenesis, homeostasis.


Full article (Rus)

Full text (Eng)



  1. Shmal'gauzen I.I. Organizm kak tseloe v individual'nom i istoricheskom razvitii. Izbrannye trudy [Body as a whole in the course of individual and historical development. Selected works]. Moscow, 1982 (in Russ.).
  2. Kulaev B.S. Evolyutsiya gomeostazisa v biologicheskom prostranstve-vremeni /Pod redaktsiei L.M. Chailakhyana [Evolution of homeostasis in biological space and time. L.M. Chailakhyan (ed.). Moscow, 2006 (in Russ.).
  3. Kolesnik E.A., Derkho M.A. Problemy biologii produktivnykh zhivotnykh, 2015, 4: 72-81 (in Russ.).
  4. Khochachka P., Somero Dzh. Biokhimicheskaya adaptatsiya [Biochemical adaptation]. Moscow, 1988 (in Russ.).
  5. Terteryan E.E. Materialy IV s"ezda Armyanskogo fiziologicheskogo obshchestva im. L.A. Orbeli [Proc. IV Conf. of L.A. Orbeli Armenian Physiological Society]. Erevan, 1987: 320 (in Russ.).
  6. Fisinin V.I., Surai P. Ptitsevodstvo, 2012, 2: 11-15 (in Russ.).
  7. Peng Y.Z., Wang Y.W., Ning D., Guo Y.M. Changes of haematic parameters, redox status and mitochondrial complex activity in the heart and liver of broilers fed with different density diets under low ambient temperature. Avian Pathology, 2013, 42(4): 327-334 CrossRef
  8. Terteryan E.E., Grigoryan M.S, Abramyan G.E., Manukyan S.S.Tezisy XV s"ezdaVsesoyuznogo fiziologicheskogo obshchestva im. I.P. Pavlova (Kishinev, 1987) [Proc. XV Conf. of I.P. Pavlov All-Union Physiological Society, Kishinev, 1987]. Leningrad, 1987, V. 2: 595 (in Russ.).
  9. Kolesnik E.A., Derkho M.A. Veterinariya, 2014, 7: 47-51 (in Russ.).
  10. Wan Y., Ma C., Wei P., Fang Q., Guo X., Zhou B., Jiang R. Dynamic expression of HSP90B1 mRNA in the hypothalamus of two Chinese chicken breeds under heat stress and association analysis with a SNP in Huainan chickens. Czech. J. Anim. Sci., 2017, 62(2): 82-87 CrossRef
  11. Gröschl M., Rauh M., Dörr H.G. Circadian rhythm of salivary cortisol, 17-OH-progesterone, and progesterone in healthy children. Clinical Chemistry, 2003, 49(10): 1688-1691 CrossRef
  12. Tsutsui K. Neurosteroid biosynthesis and function in the brain of domestic birds. Frontiers in Endocrinology, 2011, 2(37): 1-14 CrossRef
  13. Pamir E., Ali D., Ismail C., Sanli E., Ali K., Mustafa T. The effects of high dose proges-terone on neural tube development in early chick embryos. Neurology India, 2006, 54(2): 178-181.
  14. Smith J.L., Kupchak B.R., Garitaonandia I., Hoang L.K., Maina A.S., Regalla L.M., Lyons T.J. Heterologous expression of human mPRalpha, mPRbeta and mPRgamma in yeast confirms their ability to function as membrane progesterone receptors. Steroids, 2008, 73: 1160-1173 CrossRef
  15. Voican A., Francou B., Novac L., Chabbert-Buffet N., Canonico M., Meduri G., Lombes M., Scarabin P.-Y., Young J., Guiochon-Mantel A.,  Bouligand J. Pharmacology of hormone replacement therapy in menopause. In: Pharmacology. L. Gallelli (ed.). INTECH, 2012: 313-338 CrossRef
  16. Hough D., Swart P., Cloete S. Exploration of the hypothalamic-pituitary-adrenal axis to improve animal welfare by means of genetic selection: lessons from the South African merino. Animals, 2013, 3: 442-474 CrossRef
  17. Rekomendatsii po kormleniyu sel'skokhozyaistvennoi ptitsy /Pod redaktsiei V.I. Fisinina, Sh.A. Imangulova, I.A. Egorova, T.M. Okolelovoi [Poultry feeding — guide. V.I. Fisinin, Sh.A. Imangulov, I.A. Egorov, T.M. Okolelova (eds.)]. Sergiev Posad, 2004 (in Russ.).
  18. Titov V.N., Vostrov I.A., Kaba S.I., Amelyushkina V.A., Shiryaeva Yu.K. Klinicheskayameditsina, 2013, 1: 20-27 (in Russ.).
  19. Brainek P., Trubnikova T.Yu. Pryamye metody opredeleniya kholesterina lipoproteidov vysokoi i nizkoi plotnosti. Printsipy i analiticheskie kharakteristiki [Direct methods of HDL and LDL cholesterol analysis. Principles and analytical parameters]. Erba Lachema s.r.o., Brno, 2015 (in Russ.).
  20. De Geyter C., De Geyter M., Huber P.R., Nieschlag E., Holzgreve W. Progesterone serum levels during the follicular phase of the menstrual cycle originate from the crosstalk between the ovaries and the adrenal cortex. Hum. Reprod., 2002, 17(4): 933-939.
  21. Sychev S.N. Sorbtsionnye i khromatograficheskie protsessy, 2004, 4(2): 134-143 (in Russ.).
  22. Cogburn L.A., Porter T.E., Duclos M.J., Simon J., Burgess S.C., Zhu J.J., Cheng H.H., Dodgson J.B., Burnside J. Functional genomics of the chicken — a model organism. Poultry Sci., 2007, 86(10): 2059-2094 CrossRef
  23. Surai P.F. Antioxidant systems in poultry biology: heat shock proteins. Journal of Science, 2015, 5(12): 1188-1222.
  24. Brehme U., Bruck B., Gugel N., Wehrmann M., Hanke S., Finking G., Schmahl F.W., Hanke H. Aortic plaque size and endometrial response in cholesterol-fed rabbits treated with estrogen plus continuous or sequential progestin. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19: 1930-1937 CrossRef
  25. Rettenbacher S., Möstl E., Groothuis T.G.G. Gestagens and glucocorticoids in chicken eggs. General and Comparative Endocrinology, 2009, 164: 125-129 CrossRef
  26. Schwenke D.C. Gender differences in intima-media permeability to low-density lipoprotein at atherosclerosis-prone aortic sites in rabbits. Lack of effect of 17 beta-estradiol. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17(10): 2150-2157.
  27. Hanke H., Hanke S., Finking G., Muhic-Lohrer A., Mück A.O., Schmahl F.W., Haasis R., Hombach V. Different effects of estrogen and progesterone on experimental atherosclerosis in female versus male rabbits. Quantification of cellular proliferation by bromodeoxyuridine. Circulation, 1996, 94(2): 175-181 CrossRef
  28. McCrohon J.A., Nakhla S., Jessup W., Stanley K.K., Celermajer D.S. Estrogen and progesterone reduce lipid accumulation in human monocyte-derived macrophages a sex-specific effect. Circulation, 1999, 100: 2319-2325 CrossRef
  29. Rettenbacher S., Henriksen R., Groothuids T.G., Lepschy M. Corticosterone metabolism by chicken follicle cells does not affect ovarian reproductive hormone synthesis in vitro. General and Comparative Endocrinology, 2013, 184: 67-74 CrossRef
  30. Stojkov N.J., Janjic M.M., Bjelic M.M., Mihajlovic A.I., Kostic T.S., Andric S.A. Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells. Am. J. Physiol. Endocrinol. Metab., 2012, 302: E1239-E1251 CrossRef
  31. Kolesnik E.A., Derkho M.A. About cluster system of phospholipids in ontogenesis of broiler chickens. Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(2): 217-224 CrossRef