doi: 10.15389/agrobiology.2017.4.669eng

UDC 636.294:575.174.015.3

Acknowledgements:
Equipment of the Collective Center Agricultural Animals’ Bioresources and Bioengineering of the L.K. Ernst Federal Science Center for Animal Husbandry was used in the study Supported financially by Russian Science Foundation (project No. 14-36-00039)

 

POPULATION-GENETIC CHARACTERISTICS OF DOMESTIC
REINDEER OF YAKUTIA BASED ON WHOLE-GENOME SNP
ANALYSIS

V.R. Kharzinova1, A.V. Dotsev1, A.D. Solovieva1, V.I. Fedorov2,
I.M. Okhlopkov3, K. Wimmers4, H. Reyer4, G. Brem1, 5,
N.A. Zinovieva1

1L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, 60, pos. Dubrovitsy, Podolsk District, Moscow Province, 142132 Russia,
e-mail veronika0784@mail.ru (corresponding author), asnd@mail.ru, anastastasiya93@mail.ru, n_zinovieva@mail.ru;
2M.G. Sofronov Yakutsk Research Institute of Agriculture,Federal Agency of Scientific Organizations, 23/1, ul. Bestuzheva-Marlinskogo, Yakutsk, Sakha Republic (Yakutia), 677001 Russia, e-mail vfedorov_09@mail.ru;
3Institute for Biological Problems of Cryolithozone Siberian Branch of RAS, Federal Agency of Scientific Organizations, 41, pr. Lenina, Yakutsk, Sakha Republic (Yakutia), 677000 Russia, e-mail imo-ibpc@yandex.ru;
4Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Mecklenburg-Vorpommern, 18196 Dummerstorf, Germany,
e-mail wimmers@fbn-dummerstorf.de, reyer@fbn-dummerstorf.de;
5Institut für Tierzucht und Genetik, University of Veterinary Medicine (VMU), Veterinärplatz, A-1210, Vienna, Austria, e-mail gottfried.brem@vetmeduni.ac.at

The authors declare no conflict of interests

ORCID:

Kharzinova V.R.
orcid.org/0000-0002-8067-0404

Wimmers K.
orcid.org/0000-0002-9523-6790

Dotsev A.V.
orcid.org/0000-0003-3418-2511

Reyer H.
orcid.org/0000-0001-6470-0434

Solovieva A.D.
orcid.org/0000-0003-2628-9554

Brem G.
orcid.org/0000-0002-7522-0708

Fedorov V.I.
orcid.org/0000-0002-8454-6531

Zinovieva N.A.
orcid.org/0000-0003-4017-6863

Okhlopkov I.M.
orcid.org/0000-0002-6227-5216

 

Received May 23, 2017

 

The Republic of Sakha (Yakutia) is one of the main reindeer herding regions of the Russian Federation. The census population size of domesticated reindeer in the Sakha Republic amounts to more than 156 thousand individuals. Three of the four officially recognized breeds are being bred in Yakutia: the Even, Evenk and Chukotka (Khargin). The analysis of single nucleotide polymorphisms (SNPs) using DNA microarrays (DNA chips) is the useful tool to assess and preserve the biodiversity of this important agricultural species. In the present work, we have used the Bovine SNP50 BeadChip to determine the genotypes and population-genetic characteristics of three domestic reindeer originated from the territory of the Republic of Sakha (Yakutia). Tissue samples (ear skin samples) from reindeer of the breeds Even (EVN, n = 8), Evenk (EVK, n = 11) and Chukotka (CHU, n = 7) were used as biological material for the study. The PLINK 1.07 software was used to check the quality of genotyping. For data processing, we used the software PLINK 1.07, Admixture 1.3, and R packages diveRsity, VennDiagram with subsequent visualization in the R packages pophelper and ggplot2. According to the results of quality control, we selected 512 polymorphic SNPs for further analysis. Analysis of Venn-diagrams showed that the reindeer of Even and Evenk breeds have a maximal number of unique polymorphisms (14 SNPs). Eleven unique SNPs were detected in the Chukotka breed. The calculation of basic population parameters revealed that individuals of the Chukotka breed are characterized by higher levels of genetic diversity (Ho = 0.180±0.011, He = 0.156±0.008, Ar = 1.488±0.022) and a higher excess of heterozygotes (FIS = -0,124), compared to Evenk (Ho = 0.161±0.009, He = 0.153±0.008, Ar = 1.487±0.020, and FIS = -0,047) and Even (Ho = 0.164±0.010, He = 0.149±0.008, Ar = 1.471±0.021, and FIS = -0.089) breeds. The results of multidimensional scaling and the calculation of pairwise genetic distances (FST) showed the greatest closeness of the breeds Even and Evenk. Admixture analysis revealed a high degree of genetic isolation of each of the studied breeds. However, among the domestic reindeer of Chukotka and Evenk breeds we identified individuals with a mixed genetic origin, which is close to Even genetics. The obtained data will be applied in the development of programs for the conservation and sustainable use of this important animal species.

Keywords: single nucleotide polymorphism, genetic diversity, reindeer breeds.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Azarova L.V. Molodoi uchenyi, 2013, 5: 831-833 (in Russ.).
  2. Robbek N.S., Abramov A.F. Evenskaya poroda olenei Yakutii: myasnaya produktivnost', biologicheskaya i pishchevaya tsennost' [Even reindeer: meat production, biological and nutritional value]. A.D. Reshetnikov (ed.). Novosibirsk, 2017 (ISBN 978-5-4379-0519-7) (in Russ.).
  3. Okorokov A.I. Vestnik Severo-Vostochnogo federal'nogo universiteta imeni M.K. Ammosova, 2013, 10(3): 36-41 (in Russ.).
  4. Syrovatskii D.I. Dostizheniya nauki i tekhniki APK, 2006, 5: 10-11 (in Russ.).
  5. Prezidentskaya programma sotsial'no-ekonomicheskogo razvitiya sela Respubliki Sakha (Yakutiya) na 2002-2006 gody. Utv. rasporyazheniem Prezidenta Respubliki Sakha (Yakutiya) ot 23 dekabrya 2002 goda № 328-RP [The President Program for social and economic development of the Sakha Republic in 2002-2006. Approved by the decree of President of Sakha Republic № 328-RP of December 23, 2002 (Yakutiya)] (in Russ.).
  6. Zakon Respubliki Sakha (Yakutiya) ot 11 iyulya 2007 goda, Z № 991-III. O gosudarstvennoi tselevoi programme «Sotsial'no-ekonomicheskoe razvitie sela Respubliki Sakha (Yakutiya) na 2007-2011 gody» [Low of the Sakha Republic Z № 991-III of July 11, 2007 about the State Program of social and economic development of rural areas in Sakha Republic for 2007-2011] (in Russ.).
  7. Gosudarstvennaya tselevaya programma «Sotsial'no-ekonomicheskoe razvitie sela Respubliki Sakha (Yakutiya) na 2012-2016 gody». Utv. Rasporyazheniem Pravitel'stva RS (YA) № 1394-r ot 24.12.2011 g. [State Program of social and economic development of rural areas in Sakha Republic for 2012-2016. Approved by the decree of the Government of Sakha Republic № 1394-r of December 24, 2011] (in Russ.).
  8. Alekseev E.D. Tekhnologiya kruglogodichnogo izgorodnogo soderzhaniya domashnikh olenei v usloviyakh taezhnoi zony Yakutii. Avtoreferat kandidatskoi dissertatsii [Coral-based technology of all-the-year-round keeping domestic reindeers in taiga zone of Yakutiya. PhD Thesis]. Yakutsk, 2009 (in Russ.).
  9. Plemennaya rabota v olenevodstve [Breeding in reindeer herding]. Available http://reindeer.sakha-plem.ru/plemennaya-rabota-v-olenevodstve/. No date (in Russ.).
  10. Mukhachev A.D. Olenevodstvo [Reindeer herding]. Moscow, 1990 (ISBN 5-10-000725-7) (in Russ.).
  11. Roed K.H. Genetic differences at the transferrin locus in Norwegian semidomestic and wild reindeer (Rangifer tarandus L.). Hereditas, 1985, 102: 199-206.
  12. Shubin P.N. Genetics transferrin of European reindeer and moose. Genetics, 1988, 5(1): 37-41.
  13. Flagstad O., Røed K.H. Refugial origins of reindeer (Rangifer tarandus L.) inferred from mitochondrial DNA sequences. Evolution, 2003, 57(3): 658-670.
  14. Cronin M.A., MacNeil M.D., Patton J.C. Variation in mitochondrial DNA and microsatellite DNA in caribou (Rangifer tarandus) in North America. J. Mammalogy, 2005, 86: 495-505.
  15. Ball M.C., Finnegan L., Manseau M., Wilson P. Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: an application to boreal caribou (Rangifer tarandus caribou) in central Canada. Conserv. Genet., 2010, 11: 2131-2143 CrossRef
  16. McDevitt A.D., Mariani S., Hebblewhite M., De Cesare N.J., Morgantini L., Seip D., Weckworth B.V., Musiani M. Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol. Ecol., 2009, 18: 665-679 CrossRef
  17. Wilson G.A., Strobeck C., Wu L., Coffin J.W. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol., 1997, 65: 697-699 CrossRef
  18. Kharzinova V.R., Gladyr'; E.A., Fedorov V.I., Romanenko T.M., Shimit L.D., Layshev K.A., Kalashnikova L.A., Zinovieva N.A. Development of multiplex
    microsatellite panel to assess the parentage verification in and differentiation degree of reindeer populations (Rangifer tarandus). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2015, 50(6): 756-765 CrossRef
  19. Kharzinova V.R., Dotsev A.V., Kramarenko A.S, Layshev K.A., Romanenko T.M., Solov’eva A.D., Deniskova T.E., Kostyunina O.V., Brem G., Zinovieva N.A. Study of the allele pool and the degree of genetic Introgression of semi-domesticated and wild populations of reindeer (Rangifer tarandus L., 1758) using microsatellites. Agricultural Biology, 2016, 51(6): 811-823 CrossRef (in Engl.).
  20. Deniskova T.E., Sermyagin A.A., Bagirov V.A., Okhlopkov I.M., Gladyr E.A., Ivanov R.V., Brem G., Zinoveva N.A. Genetika, 2016, 52(1): 90-96 CrossRef (in Russ.).
  21. Li J., Butler J.M., Tan J., Lin H., Royer S., Ohler L., Shaler T.A., Hunter J.M., Pollart D.J., Monforte J.A., Becker C.H. Single nucleotide polymorphism determination using primer extension and time off mass spectrometry. Electrophoresis, 1999, 20: 1258-1265.
  22. Crow J.F. Spontaneous mutation as a risk factor. Exp. Clin. Immunogenet., 1995, 12: 121-128.
  23. Li W.H., Ellsworth D.L., Krushkal J., Chang B.H., Hewett-Emmet D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phylogenet. Evol., 1996, 5: 182-187.
  24. The Bovine HapMap Consortium Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science, 2009, 324: 528-532.
  25. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2015, 43: 6-17 CrossRef
  26. Wade C.M., Giulotto E., Sigurdsson S., Zoli M., Gnerre S., Imsland F., Lear T.L., Adelson D.L., Bailey E., Bellone R.R., Blöcker H., Distl O., Edgar R.C., Garber M., Leeb T., Mauceli E. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science, 2009, 326: 865-867 CrossRef
  27. Archibald A.L., Bolund L., Churcher C., Fredholm M., Groenen M.A., Harlizius B., Lee K.T., Milan D., Rogers J., Rothschild M.F., Uenishi H., Wang J., Schook L.B., Swine Genome Sequencing Consortium. Pig genome sequence — analysis and publication strategy. BMC Genomics, 2010, 11: 438-442 CrossRef
  28. Jiang Y., Xie M., Chen W., Talbot R., Maddox J.F., Thomas F., Chunhua W., Muzny D.M., Yuxiang L., Wenguang Z., Stanton J.-A., Brauning R., Barris W.C., Hourlier T., Bronwen L. Aken B.L., Searle S.M.J., Adelson D.L., Bian C., Cam G.R., Chen Y., Cheng S., DeSilva U., Dixen K., Dong Y., Fan G., Franklin I.R., Fu S., Guan R., Highland M.A., Holder M.E., Huang G., Ingham A.B., Jhangiani S.N., Kalra D., Kovar C.L., Lee S.L., Liu W., Liu X., Lu C., Lv T., Mathew T., McWilliam S., Menzies M., Pan S., Robelin D., Servin B., Townley D., Wang W., Wei B., White S.N., Yang X., Ye C., Yue Y., Zeng P., Zhou Q., Hansen J.B., Kristensen K., Gibbs R.A., Flicek P., Warkup C.C., Jones H.E., Oddy V.H., Nicholas F.W., McEwan J.C., Kijas J., Wang J., Worley K.C., Archibald A.L., Cockett N., Xu X., Wang W., Dalrymple B.P. The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 2014, 344: 1168-1173 CrossRef
  29. Hacia J.G., Collins F.S. Mutation analysis using oligonucleotide microarrays. J. Med. Genet., 1999, 36: 730-736.
  30. Glazko V.I. Farm animals, 2012, 1: 24-29 (in Russ.).
  31. Seeb J.E., Carvalho G.R., Hauser L., Naish K., Roberts S., Seeb L.W. Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Molecular Ecology Resources, 2011, 11: 1-8 CrossRef
  32. Pertoldi C., Wójcik J.M, Tokarska M., Kawalko A., Kristensen T.N., Loeschcke V., Gregersen V.R., Coltman D., Wilson G.A., Randi E., Henryon M., Bendixen C. Genome variability in European and American bison detected using BovineSNP50 BeadChip. Conservation Genetics, 2010, 11: 627-634.
  33. Miller J.M., Poissant J., Kijas J.W., Coltman D.W., International Sheep Genomics Consortium. A genome-wide set of SNPs detects population substructure and long range disequilibrium in wild sheep. Molecular Ecology Resources, 2011, 11(2): 314-322 CrossRef
  34. Ogden R., Baird J., Senn H., McEwing R. The use of cross-species genome-wide arrays to discover SNP markers for conservation genetics: a case study from Arabian and scimitar-horned oryx. Conservation Genetics Resources, 2012, 4: 471-473.
  35. Haynes G.D., Latch E.K. Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip. PLoS ONE, 2012, 7: e36536 CrossRef
  36. Deniskova T.E., Okhlopkov I.M., Sermyagin A.A., Gladyr' E.A., Bagirov V.A., Sölkner I., Mamaev N.V., Brem G., Zinov'eva N.A. Doklady Akademii nauk, 2016, 469(5): 625-630 (in Russ.).
  37. Kasarda R., Moravcíková N., Zidek R., Mészáros G., Kadlecík O., Trakovická A., Pokorádi J. Investigation of the genetic distances of bovids and cervids using BovineSNP50k BeadChip. Arch. Anim. Breed., 2015, 58: 57-63 CrossRef
  38. Kharzinova V.R., Sermyagin A. A., Gladyr E.A., Okhlopkov I. M., Brem G., Zinovieva N.A. A study of applicability of SNP chips developed for bovine and ovine species to whole-genome analysis of reindeer Rangifer tarandus. Journal of Heredity, 2015, 106(6): 758-761 CrossRef
  39. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81: 559-575 CrossRef
  40. Fan J.B., Oliphant A., Shen R., Kermani B.G., Garcia F., Gunderson K.L., Hansen M., Steemers F., Butler S.L., Deloukas P., Galver L., Hunt S., McBride C., Bibikova M., Rubano T., Chen J., Wickham E., Doucet D., Chang W., Campbell D., Zhang B., Kruglyak S., Bentley D., Haas J., Rigault P., Zhou L., Stuelpnagel J., Chee M.S. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol., 2003, 68: 69-78.
  41. Hartl D.L., Clark A.G. Principles of population genetics. Sunderland, Massachusetts, 1997.
  42. Keenan K., McGinnity P., Cross T.F., Crozier W.W., Prodohl P.A. diveRsity: An R package for the estimation of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 2013, 4: 782-788 CrossRef
  43. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38: 1358-1370.
  44. Alexander D.H., Novembre J., Lange K. Fast model based estimation of ancestry in unrelated individuals. Genome Res., 2009, 19: 1655-1664 CrossRef
  45. Francis R.M. pophelper: An R package and web app to analyse and visualise population structure. Molecular Ecology Resources, 2016 CrossRef
  46. Tokarska M., Marshall T., Kowalczyk R., Wójcik J.M., Pertoldi C., Kristensen T.N., Loeschcke V., Gregersen V.R., Bendixen C. Effective ness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Journal of Heredity, 2009, 103: 326-332 CrossRef
  47. Olenski K., Kaminski S., Tokarska M., Hering D.M. Subset of SNPs for parental identification in European bison Lowland-Bialowieza line (Bison bonasus bonasus). Conservation Genetics Resources, 2017, First Online 13 May 2017: 1-6 CrossRef

back