doi: 10.15389/agrobiology.2017.4.658eng

UDC 636.2:577.212.3



V.I. Glazko1, 2, O.I. Skobel1, G.Yu. Kosovsky1, T.T. Glazko1, 2

1Center for Experimental Embryology and Reproductive Biotechnology, Federal Agency of Scientific Organizations, 12/4, ul. Kostyakova, Moscow, 127422 Russia,
2K.A. Timiryazev Russian State Agrarian University—Moscow Agrarian Academy, 49, ul. Timiryazevskaya, Moscow, 127550 Russia

The authors declare no conflict of interests


Glazko V.I.

Kosovsky G.Yu.

Skobel O.I.

Glazko T.T.

Received December 5, 2016


Genetic landscape of bovine genome attracts a lot of attention in recent years. This is due to the complexity of genomic selection task solution, i.e. the use of multilocus genotypes in order to simplify and hasten breeding. Accumulated data show that there is high evolutionary speed of different genetic elements and also they have structure functional polymorphism intensity (L. Chen et al., 2017). It was shown that interspersed repeats account for about 50 % of nucleotide sequence of the bovine genome (R.L Tellam et al., 2009). Also it was found that some of the interspersed repeats cluster into conservative domains along the bovine genome due to joint localization (D.L. Adelson et al., 2009). The characteristics of domain distribution are still not fully studied despite the fact that it is very important to identify conservative and variable domains throughout the bovine genome to solve traditional tasks of their genetic resources management and controlling. In this work domain distribution of mobile genetic elements and their products of recombination in nucleotide sequences of 13436028 nucleotides of bovine chromosome 1 were analyzed by means of Repeat Masker mobile genetic elements database and Integrated Genome Browser software. It was revealed that the most prevalent types throughout analyzed region are SINE/tRNA-Core-RTE, LINE/RTE-BovB, LINE/L1 and LTR/ERV. Their joint localization in bovine genome has complicated structure. The most common pairwise clusters are SINE and LINE, SINE/tRNA-Core-RTE and LTR EVR, (LTR/ERVK)/(LINE/RTE-BovB), (LTR/ERVK)/(LINE/L1). Two last pairs are the bases for such triple clusters as (LINE/RTE-BovB)/(BTLTR1)/(LINE/RTE-BovB) and (LINE/L1)/(BTLTR1J)/(LINE/L1). It should be mentioned that there is no such clustering with other retrotransposons. It was revealed that there is some certain bias of these triple clusters high density to the distal end of studied region of chromosome 1. By the means of Integrated Genome Browser software the localization of obtained triple products of recombination between LINE and LTR ERV to structural genes was analyzed. It was found that only 34 clusters are localized in 12 structural genes (other are located in intergenic space). Besides, 10 and 12 copies are located in two genes that are closely connected with the function of central nervous system in mammals, grik1 and app. The fact that 9 copies of triple gene construct (LINE/RTE-BovB)/(BTLTR1)/(LINE/RTE-BovB) are found in each of two genes and (LINE/L1)/(BTLTR1J)/(LINE/L1) had only 1 copy in grik1 and 3 copies in app, suggests that these genes are ancestral targets for such insertions and their conservations. It also should be mentioned that (LINE/L1)/(BTLTR1J)/(LINE/L1) construct was found only in these two genes but not in other 10 genes where (LINE/RTE-BovB)/(BTLTR1)/(LINE/RTE-BovB) is also located. Specific features of distribution of products of recombination between LINE and LTR ERV throughout the studied chromosome 1 area and their localization in structural genes suggest the possible presence of structure functional elements there. Revealing of such elements is the subject of our further study.

Keywords: mobile genetic elements, retrotransposons, DNA transposons, products of recombination, domain distribution, genomic landscape, cattle.


Full article (Rus)

Full text (Eng)




  1. Elsik C.G., Tellam R.L., Worley K.C.  The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science, 2009, 324(5926): 522-528 CrossRef
  2. Adelson D.L., Raison J.M., Edgar R.C. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. PNAS USA, 2009, 106(31): 12855-12860 CrossRef
  3. Walsh A.M., Kortschak R.D., Gardner M.G., Bertozzi T., Adelson D.L. Widespread horizontal transfer of retrotransposons. PNAS USA, 2013, 110(3): 1012-1016 CrossRef
  4. Godakova S.A., Sevast'yanova G.A., Semenova S.K. Molekulyarnaya genetika, mikrobiologiya i virusologiya, 2016, 34(1): 9-12 CrossRef (in Russ.).
  5. Wang X., Liu X. Close ecological relationship among species facilitated horizontal transfer of retrotransposons. BMC Evolutionary Biology, 2016, 1: 201 CrossRef
  6. Chen L., Chamberlain A.J., Reich C.M., Daetwyler H.D., Hayes B.J. Detection and validation of structural variations in bovine whole-genome sequence data. Genet. Sel. Evol., 2017, 49: 13 CrossRef
  7. Krull M., Petrusma M., Makalowski W., Brosius J., Schmitz J. Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res., 2007, 17(8): 1139-1145 CrossRef
  8. Schütz E., Wehrhahn C., Wanjek M., Bortfeld R., Wemheuer W.E., Beck J., Brenig B. The Holstein Friesian Lethal Haplotype 5 (HH5) results from a complete deletion of TBF1M and cholesterol deficiency (CDH) from an ERV-(LTR) insertion into the coding region of APOB. PLoS ONE, 2016, 11(4): e0154602 CrossRef
  9. Kordis D., Gubensek F. Horizontal transfer of non-LTR retrotransposons in vertebrates. Genetica, 1999, 107(1-3): 121-128.
  10. Kordis D., Gubensek F. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. PNAS USA, 1998, 95(18): 10704-10709.
  11. Gentles A.J., Wakefield M.J., Kohany O., Gu W., Batzer M.A., Pollock D.D., Jurka J. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res., 2007, 17(7): 992-1004 CrossRef
  12. Carelli F.N., Hayakawa T., Go Y., Imai H., Warnefors M., Kaessmann H. The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res., 2016, 26(3): 301-314 CrossRef
  13. Tan S., Cardoso-Moreira M., Shi W., Zhang D., Huang J., Mao Y., Jia H., Zhang Y., Chen C., Shao Y., Leng L., Liu Z., Huang X., Long M.,Zhang Y.E.. LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans. Genome Res., 2016, 26(12): 1663-1675 CrossRef
  14. Garcia-Etxebarria K., Sistiaga-Poveda M., Jugo B.M. Endogenous retroviruses in domestic animals. Curr. Genomics, 2014, 15(4): 256-265 CrossRef
  15. Mei L., Ding X., Tsang S.-Y., Pun F.W., Ng S.-K., Yang J., Zhao C., Li D., Wan W., Yu C.-H., Tan T.-C., Poon W.-S., Leung G.K.-K., Ng H.-K., Zhang L., Xue H. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome. BMC Genomics, 2011, 12: 564 CrossRef
  16. Ng S.-K., Hu T., Long X., Chan C.-H., Tsang S.-Y., Xue H. Feature co-localization landscape of the human genome. Sci. Rep., 2016, 6: 20650 CrossRef
  17. Liu M., Eiden M.V. Role of human endogenous retroviral long terminal repeats (LTRs) in maintaining the integrity of the human germ line. Viruses, 2011, 3(6): 901-905 CrossRef
  18. Glazko V.I., Feofilov A.V., Bardukov N.V., Glazko T.T. Izvestiya TSKhA, 2012, 1: 118-125 (in Russ.).
  19. Smit A.F.A., Hubley R., Green P. RepeatMasker. Available No date.
  20. bosTau7.fa.out.gz, Oct 2011. RepeatMasker open-4.0.5, Repeat Library 20140131. Available No date.
  21. Nikol J.W., Helt G.A., Blanchard S.G. Jr., Raja A., Loraine A.E. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics, 2009, 25(20): 2730-2731 CrossRef
  22. GenBank. Available No date.
  23. Ivancevic A.M., Kortschak R.D.,·Bertozzi T., Adelson D.L. LINEs between species: evolutionary dynamics of LINE-1 retrotransposons across the eukaryotic tree of life. Genome Biol. Evol., 2016, 8(11): 3301-3322 CrossRef
  24. Saylor B., Elliott T.A., Linquist S., Kremer S.C., Gregory T.R., Cottenie K. A novel application of ecological analyses to assess transposable element distributions in the genome of the domestic cow, Bos taurus. Genome, 2013, 56(9): 521-533 CrossRef
  25. Hirata Y., Zai C.C., Souza R.P., Lieberman J.A., Meltzer H.Y., Kennedy J.L. Association study of GRIK1 gene polymorphisms in schizophrenia: case-control and family-based studies. Hum. Psychopharmacol., 2012, 27(4):  345-351 CrossRef
  26. Le-Niculescu H., Patel S.D., Bhat M., Kuczenski R., Faraone S.V., Tsuang M.T., McMahon F.J., Schork N.J., Nurnberger J.I. Jr., Niculescu III A.B. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am. J. Med. Genet. B Neuropsychiatr. Genet., 2009, 150B(2): 155-181 CrossRef
  27. Bashkatov S.A., Nurgalieva A.Kh., Enikeeva R.F., Kazantseva A.V., Khusnutdinova E.K. Vestnik YuUrGU. Seriya Psikhologiya, 2016, 9(4): 25-39 CrossRef (in Russ.).
  28. Tatarnikova O.G., Orlov M.A., Bobkova N.V. Uspekhi biologicheskoi khimii, 2015, 55: 351-390 (in Russ.).
  29. Costassa E.V., Fiorini M., Zanusso G., Peletto S., Acutis P., Baioni E., Maurella C., Tagliavini F., Catania M., Gallo M., Lo Faro M., Chieppa M.N., Meloni D., D’Angelo A., Paciello O., Ghidoni R., Tonoli E., Casalone C., Corona C. Characterization of amyloid-β deposits in bovine brains. Journal of Alzheimer’s Disease, 2016, 51: 875-887 CrossRef
  30. Trut L.N. Vestnik VOGiS, 2007, 11(2): 273-289 (in Russ.).
  31. Iwashita S., Itoh T., Takeda H., Sugimoto Y., Takahashi I., Nobukuni T., Sezaki M., Masui T., Hashimoto K. Gene organization of bovine BCNT that contains a portion corresponding to an endonuclease domain derived from an RTE-1 (Bov-B LINE), non-LTR retrotransposable element: duplication of an intramolecular repeat unit downstream of the truncated RTE-1. Gene, 2001, 268(1-2): 59-66 CrossRef