doi: 10.15389/agrobiology.2016.4.553eng

UDC 636.52/.58:636.087.72:546.72/.73-022.532

Acknowledgements:
Hematological studies were performed using standard techniques in the Laboratory of Agroecology of Nanomaterials and Test Center of All-Russian Research Institute of Beef CattleBreeding (accreditation certificate RA. RU.21PF59 from 12/02/15). Analysis of chemical elements was performed in the laboratory of ANO Center for Biotic Medicine, Moscow (accreditation certificate GSEN.RU.TSAO.311, registration number in the State Register ROSS RU. 0001.513118).

Supported by Russian Scientific Foundation (project № 14-36-00023).

 

TO THE DEVELOPMENT OF INNOVATIVE MINERAL ADDITIVES
BASED ON ALLOY OF Fe AND Co ANTAGONISTS AS AN EXAMPLE

Е.А. Sizova1,2, S.А. Miroshnikov1, S.V. Lebedev2, А.V. Кudasheva1,
N.I. Ryabov1

1All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, 29, ul. 9 Yan varya, Orenburg, 460000 Russia,
e-mail sizova-l78@ya.ru, vniims.or@mail.ru;
2Orenburg State University, 13, prosp. Pobedy, Orenburg, 460018 Russia,
e-mail elenka_rs@mail.ru, osipaylova@mail.ru

Received May 25, 2016

 

The problem of joint use of antagonist elements in the nutrition of farm animals is solved through a separate feeding with such trace elements and through an increase in the dosage of substances. The unique properties of nanomaterials allow us to suggest the promising alternative solutions by combining antagonists in a single drug, i.e. ultra-fine powders of metal alloys. In this paper, we for the first time compared the growth, haematological and biochemical parameters of broiler chickens (Russian cross Smena 7) after feeding them with individual salts of two microelements or their alloy in the form of nanoparticles. The pair of antagonists (iron and cobalt) was chosen due to the same mechanism of their absorption in intestine. Salts FeSO4 and 7H2O and CoCl2 (group I) or the derived nanoparticles (d = 62.5 ± 0.6 nm) of the metal alloy (group II) were used as sources of iron and cobalt and mineral supplement. After calculation of the proportion of common microelement pool to the value of its entry with fodder expressed in percentage, the excess of iron up to 50.0 % was registered in the group when alloy nanoparticles applied (comparing to the pure iron), and the excess of cobalt was 34.7 %. Biological significance of the obtained values is the amount of the element deposited in the body expressed in grams per 100 grams of element entering with the incoming feed. In this case, growth rate increased and metabolism changes in chicken were registered. During the experiment, weight gain exceeded the control in group I by 6 % (p ≤ 0.05), and in group II by 11 % (p ≤ 0.001). Feed costs for growing chickens in the control group was 2.48 kg that is by 9.3 and 13.7 % more than in groups I and II, respectively. Using Co-Fe alloy increased weight gain by 4.1 % (p ≤ 0.05) compared with group I while the food consumption reduced by 4.8 %. Creatinine content in groups I and II was 63.9 % (p ≤ 0.01) and 38.3 % (p ≤ 0.05) higher than in the control, respectively. At the same time, the blood urea concentration in group I, and blood glucose level in group II increased compared to control by 38.5 % (p ≤ 0.05) and 36.5 % (p ≤ 0.05), respectively. However, the revealed increase of iron pool in group II was not associated with a significant increase in iron concentration in blood serum in relation to that in group I (it was possibly due to the homeostatic regulation, as an excess of iron may lead to the generation of reactive oxygen species) with a significant reduction in its concentration (by 74.3-78.3 %, p < 0.01) in control at dietary iron deficiency. Using nanoparticle preparations was accompanied by an increase in fraction of arginine in liver of experimental chickens up to 8.10±0.105 % as compared with the control value of 5.05±0.075 % (note, the growth-promoting effects of L-arginine were described in literature).

Keywords: nanoparticles of iron and cobalt, broiler chicks, growth intensity, chemical elements.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Goyer R.A. Toxic and essential metal interactions. Annu. Rev. Nutr., 1997, 17: 37-50.
  2. Notova S.V., Miroshnikov S.A., Bolodurina I.P., Didikina E.V. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2006, S2: 59-63 (in Russ.).
  3. Xin W.,Xugang S.,Xie C.,Li J.,Hu J.,Yin Y.-l., Deng Z.-y. The acute and chronic effects of monosodium l-glutamate on serum iron and total iron-binding capacity in the jugular artery and vein of pigs. Biol. Trace. Elem. Res., 2013, 153: 191-195 CrossRef
  4. Sukhanova O.N., Miroshnikov S.A., Kvan O.V. Vestnik myasnogo skotovodstva, 2011, 3(64): 87-92 (in Russ.).
  5. Kudrin A.V., Skal'nyi A.V., Zhavoronkov A.A., Skal'naya M.G., Gromova O.A. Immunofarmakologiya mikroelementov [Immunopharmacology of microelements]. Moscow, 2000 (in Russ.).
  6. Huang R.L., Yin Y.L., Wu G.Y., Zhang Y.G., Li T.J., Li L.L., Li M.X., Tang Z.R., Zhang J., Wang B., He J.H., Nie X.Z. Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poultry Sci., 2005, 84(9): 1383-1388 CrossRef
  7. Fang R.J., Yin Y.L., Wang K.N., He J.H., Chen Q.H., Fan M.Z., Wu G.Y. Comparison of the regression analysis technique and the substitution method for the determination of true phosphorus digestibility and faecal endogenous phosphorus losses associated with feed ingredients for growing pigs. Livestock Sci., 2007, 109: 251-254 CrossRef
  8. Reddy M.B., Hurrell R.F., Cook J.D. Estimation of nonheme-iron bioavailability from meal composition. Am. J. Clin. Nutr., 2000, 71(4): 937-943.
  9. Lazarev M.I., Enileev R.Kh. Vitaminno-mineral'nyi kompleks. Patent RF 2195269. Rossiiskaya Federatsiya A61K31/00. Zayavl. 14.02.2001. Opubl. 27.12.2002. Byul. № 26 [Vitamin-mineral complex. Patent RF 2195269. Russian Federation A61K31/00. Appl. February 14, 2001. Publ. December 27, 2002. Bul. № 26] (in Russ.).
  10. Lind T., Lönnerdal B., Stenlund H., Gamayanti I., Ismail D., Ses-wandhana R., Persson L.A. A community based randomized controlled trial of iron and zinc supplementation in Indonesian infants: effects on growth and development. Am. J. Slin. Nutr., 2004, 80: 729-736.
  11. Shikh E.V., Ramenskaya G.V., Grebenshchikova L.Yu. Lechebnoe delo, 2010, 4: 17-22 (in Russ.).
  12. Bogoslovskaya O.A., Sizova E.A., Polyakova V.S., Miroshnikov S.A., Leipunskii I.O., Ol'khovskaya I.P., Glushchenko N.N. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2009, 2: 124-127 (in Russ.).
  13. Nikonov I.N., Folmanis Yu.G., Folmanis G.E., Kovalenko L.V., Laptev G.Yu., Egorov I.A., Fisinin V.I., Tananaev I.G. Doklady akademii nauk, 2011, 440(4): 565-569 (in Russ.).
  14. Raspopov R.V., Trushina E.N., Gmoshinskii I.V., Khotimchenko S.A. Voprosy pitaniya, 2011, 80(3): 25-30 (in Russ.).
  15. Kureneva V.P., Egorov I.A., Fedorov Yu.I., Glushchenko N.N., Fatkullina L.D. Sposob kormleniya tsyplyat. Patent SSSR 1346114. Soyuz Sovetskikh Sotsialisticheskikh Respublik A23K. Zayavl. 24.07.84. Opubl. 23.10.87. Byul. № 39 [A method of feeding chickens. Patent USSR 1346114. The Union of Soviet Socialist Republics A23K. Appl. July 24, 1984. Publ. October 23, 1987. Bul. № 39] (in Russ.).
  16. Orobchenko A.L. Veterinariya, zootekhniya i biotekhnologiya, 2014, 10: 26-38 (in Russ.).
  17. Orobchenko A.L., Roman'ko M.E., Kutsan A.T. Veterinariya, zootekhniya i biotekhnologiya, 2014, 12: 32-40 (in Russ.).
  18. Fisinin V.I., Egorov I.A., Mukhina N.V., Cherkai Z.N. Materialy XVII Mezhdunarodnoi konferentsii VNAP «Innovatsionnye razrabotki i ikh osvoenie v promyshlennom ptitsevodstve» [Proc. XVII Int. Conf. WSAP «Innovative developments in poultry and their practical use»]. Sergiev Posad, 2012: 268-271 (in Russ.).
  19. Smith R.M. Cobalt. In: Trace elements in human and animal nutrition. V. 1. W. Mertz (ed.). Academic Press, Inc., San Diego, California, 1987: 143-183.
  20. Underwood E.J. Cobalt. Nutr. Rev., 1975, 33(3): 65-9.
  21. Zhigach A.N., Leipunskii I.O., Kuskov M.L., Stoenko N.I., Storozhev V.B. Pribory i tekhnika eksperimenta, 2000, 6: 122-127 (in Russ.).
  22. Fisinin V.I., Egorov I.A., Lenkova T.N., Okolelova T.M., Ignatova G.V., Shevyakov A.N.,Panin I.G., Grechishnikov V.V., Vetrov P.A., Afanas'ev V.A., Ponomarenko Yu.A. Metodicheskie ukazaniya po optimizatsii retseptov kombikormov dlya sel'skokhozyaistvennoi ptitsy. VNITIP [Guidelines for the optimization of feed recipes for poultry. VNITIP]. Moscow, 2009 (in Russ.).
  23. Aslam M.F., Frazer D.M., Faria N., Bruggraber S.F., Wilkins S.J., Mirciov C., Powell J.J., Anderson G.J., Pereira D.I. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. FASEB J., 2014, 28(8): 3671-3678 CrossRef
  24. Arosio P., Carmona F., Gozzelino R., Maccarinelli F., Poli M. The importance of eukaryotic ferritins in iron handling and cytoprotection. Biochem. J., 2015, 472(1): 1-15 CrossRef
  25. Liu X., Theil E.C. Ferritin as an iron concentrator and chelator target. Ann. NY Acad. Sci., 2005, 1054: 136-140.
  26. Hurrell R.F. Safety and efficacy of iron supplements in malaria-endemic areas. Ann. Nutr. Metab., 2011, 59: 64-66.
  27. Lomer M.C., Cook W.B., Jan-Mohamed H.J., Hutchinson C., Liu D.Y., Hider R.C., Powell J.J. Iron requirements based upon iron absorption tests are poorly predicted by haematological indices in patients with inactive inflammatory bowel disease. Br. J. Nutr., 2012, 107, 1806-1811 CrossRef
  28. Pereira D.I., Mergler B.I., Faria N., Bruggraber S.F., Aslam M.F., Poots L.K., Prassmayer L., Lonnerdal B., Brown A.P., Powell J.J. Caco-2 cell acquisition of dietary iron (III) invokes a nanoparticle at endocytic pathway. PLoS ONE, 2013, 8: 81250 CrossRef
  29. Nemmar A., Beegam S., Yuvaraju P., Yasin J., Tariq S., Attoub S., Ali B.H. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part. Fibre Toxicol., 2016, Apr 30, 13(1): 22 CrossRef
  30. Latunde-Dada G.O., Pereira D.I., Tempest B., Ilyas H., Flynn A.C., Aslam M.F., Simpson R.J., Powell J.J. A nanoparticulate ferritin-core mimetic is well taken up by HuTu 80 duodenal cells and its absorption in mice is regulated by body iron. J. Nutr., 2014, 144(12): 1896-1902 CrossRef
  31. Sizova E., Yausheva E., Kosyn D., Miroshnikov S. Growth enhancing effect of intramuscular injections with nano- and microparticles of elemental iron. Modern Applied Science, 2015, 9(10): 17-26 CrossRef
  32. Miroshnikov S.A., Yausheva E.V., Sizova E.A., Miroshnikova E.P., Levahin V.I. Comparative assessment of effect of copper nano- and microparticles in chicken. Oriental Journal of Chemistry, 2015, 31(4): 2327-2336 CrossRef
  33. Huang C.C., Tsai S.C., Lin W.T. Potential ergogenic effects of L-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Exp. Gerontol., 2008, 43(6): 571-577 CrossRef
  34. Mostafavi-Pour Z., Zal F., Monabati A., Vessal M. Protective effects of a combination of Quercetin and vitamin E against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Hepatol. Res., 2008, 38(4): 385-392 CrossRef
  35. Wu G., Ott T.L., Knabe D.A., Bazer F.W.Amino acid composition of the fetal pig. J. Nutr., 1999, 129: 1031-1038.
  36. Wu G., Knabe D.A., Kim S.W. Arginine nutrition in neonatal pigs. J. Nutr., 2004, 134: 2783S-2790S.
  37. Flynn N.E., Meininger C.J., Haynes T.E., Wu G. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed. Pharmacother., 2002, 56: 427-438 CrossRef
  38. McKnight J.R., Satterfield M.C., Jobgen W.S., Smith S.B., Spencer T.E., Meininger C.J., McNeal C.J., Wu G. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. AminoAcids, 2010, 39(2): 349-357 CrossRef
  39. Fouad A.M., El-Senousey H.K., Yang X.J., Yao J.H. Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal, 2013, 7(8): 1239-1245 CrossRef
  40. Kashirina L.G., Denikin S.A. Vestnik Krasnoyarskogo GAU, 2014, 4: 203-207 (in Russ.).

 

back