doi: 10.15389/agrobiology.2016.4.524eng

UDC 615.9:546.47-022.532]:57.084.1

Acknowledgements:
Hematological studies were performed using standard techniques in the Laboratory of Agroecology of Nanomaterials and Test Center of All-Russian Research Institute of Beef CattleBreeding (accreditation certificate RA. RU.21PF59 from 12/02/15). Analysis of chemical elements was performed in the laboratory of ANO Center for Biotic Medicine, Moscow (accreditation certificate GSEN.RU.TSAO.311, registration number in the State Register ROSS RU. 0001.513118).

Supported by Russian Scientific Foundation (project № 14-36-00023).

 

STUDY OF POTENTIAL TOXICITY OF ZINC AND ITS OXIDE
NANOPARTICLES ON BLOOD PARAMETERS, MORPHOLOGICAL
AND FUNCTIONAL STATE OF LIVER AND ELEMENT STATUS OF
PREGNANT WISTAR RATS AND FETUS

E.A. Rusakova1, Е.А. Sizova1,2, S.А. Miroshnikov2, О.Yu. Sipailova1,
Sh.А. Makaev2

1Orenburg State University, prosp. Pobedy, 13, Orenburg, 460018 Russia,
e-mail elenka_rs@mail.ru, osipaylo-va@mail.ru;
2All-Russian Research Institute of Beef Cattle Breeding, Federal Agency of Scientific Organizations, 29, ul. 9 Yanvarya, Orenburg, 460000 Russia,
e-mail sizova-l78@ya.ru, vniims.or@mail.ru

Received June 5, 2016

 

Nanoparticles of zinc (Zn NPs) and zinc oxide (ZnO NPs) are considered as materials of low toxicity, as Zn is the most important trace element in human body usually found in food and used as a food additive. Currently, there is a serious lack of information about the potential dangers of nanomaterials (NMs) for mammals, and particularly for human. Moreover, there is not enough information about their potential hazard for reproductive health. The aim of this study is to investigate the potential negative effects of positively charged 90 and 95 nm nanoparticles of zinc (Zn NPs) and zinc oxide (ZnO NPs) on metabolic processes during pregnancy according to morphological and biochemical blood indices, morphofunctional structure of liver and element status in Wistar rats and fetuses. Blood was collected from 21-day old animals. Of blood morphological indices, concentration of erythrocytes (1012/l), white blood cells (109/l), hemoglobin (g/l), hematocrit (%) was estimated. In blood serum ALT (U/l), AST (U/l) and LDH (U/l) activity was assessed. Tissue samples were analyzed on a mass spectrometer Elan 9000 and atomic emission spectrometer Optima 2000 V (Perkin Elmer, USA). We did not observe embryo-fetal pathology in rats in the experiment. The concentration of red blood cells and hemoglobin increased when Zn NPs injected. ZnO NPs application led to the development of mild leukocytosis. Increasing activity of enzymes (ALT, AST, LDH) demonstrates the destructive process in hepatocytes of mother rats, which depends directly on the dose and type of the nanoparticles. Generally, the blood parameters confirm a potentially hepatotoxic effect of Zn NPs and ZnO NPs which was shown histologically. Microstructural changes of liver tissue (degeneration and cytolysis along with regeneration and functional activation of the body) may be considered as compensatory (adaptive) response to the toxic effects of the nanoparticles. According to the severity of these phenomena and given comparable doses, the ZnO NPs can be attributed to more toxic NPs than Zn NPs. Zn NPs and ZnO NPs did not lead to critical changes in the pool of macro- and microelements and Zn level in liver of mother rats and fetal tissues. There was an accumulation of essential elements, though it had no notable influence on the course and outcome of pregnancy in the rats. The most expressed biological effect of nanoparticles was observed in the rats at the maximum doses of Zn NPs and ZnO NPs.

Keywords: rats, Zn NPs, ZnO NPs, blood, liver, pregnancy, fetus, chemical elements.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Hernández Battez A., González R., Viesca J.L. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 2008, 265(3-4): 422-428.
  2. Schilling K., Bradford B., Castelli D., Dufour E., Nash J.F., Pape W., Schulte S., Tooley I., van den Bosch J., Schellauf F. Human safety review of «nano» titanium dioxide and zinc oxide. Photochem. Photobiol. Sci., 2010, 9(4): 495-509 CrossRef
  3. Gerloff K., Albrecht C., Boots A.W., Förster I., Schins R.P.F. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology, 2009, 3(4): 355-364 CrossRef
  4. Jin T., Sun D., Su J.Y., Zhang H., Sue H.J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci., 2009, 74(1): M46-M52 CrossRef
  5. He L., Liu Y., Mustapha A., Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res., 2011, 166(3): 207-215 CrossRef
  6. Rasmussen J.W., Martinez E., Louka P., Wingett D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9): 1063-1077 CrossRef
  7. John S., Marpu S., Li J., Omary M., Hu Z., Fujita Y., Neogi A. Hybrid zinc oxide nanoparticles for biophotonics. J. Nanosci. Nanotechnol., 2010, 10(3): 1707-1712.
  8. Drinker P., Thomson R.M., Finn J.L. Metal fume fever: IV. Threshold doses of zinc oxide, preventative measures, and the chronic effects of repeated exposures. J. Ind. Hyg. Toxicol., 1927, 9: 331-345.
  9. Blanc P., Wong H., Bernstein M.S., Boushey H.A. An experimental human model of metal fume fever. Ann. Intern. Med., 1991, 114(11): 930-936 CrossRef 
  10. Baek M., Chung H.E., Yu J., Lee J.A., Kim T.H., Oh J.M., Lee W.J., Paek S.M., Lee J.K., Jeong J., Choy J.H., Choi S.J. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int. J. Nanomed., 2012, 7: 3081-3097 CrossRef
  11. Vaseem M., Umar A., Hahn Y.B. ZnO nanoparticles: growth, properties, and applications. In: Metal oxide nanostructures and their applications. A. Umar, Y.B. Hahn (eds.). Valencia, CA, American Scientific Publishers, 2010: 1-36.
  12. Yah C.S., Simate G.S., Iyuke S.E. Nanoparticles toxicity and their routes of exposures. Pak. J. Pharm. Sci., 2012, 25(2): 477-491.
  13. Lu X., Liu Y., Kong X., Lobie P.E., Chen C., Zhu T. Nanotoxicity: a growing need for study in the endocrine system. Small, 2013, 9(9-10): 1654-1671 CrossRef
  14. Iavicoli I., Fontana L., Leso V., Bergamaschi A. The effects of nanomaterials as endocrine disruptors. Int. J. Mol. Sci., 2013, 14(8): 16732-16801 CrossRef
  15. Yamashita K., Yoshioka Y. Safety assessment of nanomaterials in reproductive developmental field. Yakugaku Zasshi. (Japanese), 2012, 132(3): 331-335. 
  16. GOST R 53434-2009. Printsipy nadlezhashchei laboratornoi praktiki. Tekhnicheskie trebovaniya [State standards GOST R 53434-2009. Principles of good laboratory practice. Technical requirements]. Moscow, 2010 (in Russ.).
  17. GOST R 51000.3-1996. Obshchie trebovaniya k ispytatel'nym laboratoriyam. Tekhnicheskie trebovaniya [State standards GOST R 51000.3-1996. General requirements for testing laboratories. Technical requirements]. Moscow, 1996 (in Russ.).
  18. Rukovodstvo po laboratornym zhivotnym i al'ternativnym modelyam v biomeditsinskikh tekhnologiyakh /Pod redaktsiei N.N. Karkishchenko, S.V. Gracheva [Guidance on laboratory animals and alternative models in biomedical technology. N.N. Karkishchenko, S.V. Grachev (eds.)]. Moscow, 2010 (in Russ.).
  19. Scheffé H. A method for judging all contrasts in the analysis of variance. Biometrika, 1953, 40(1/2): 87-110.
  20. Simonov P.V., Reznichenko L.S., Chekman I.S. Vestnik Vitebskogo gosudarstvennogo meditsinskogo universiteta, 2015, 14(4): 112-117 (in Russ.).
  21. Klinicheskaya biokhimiya /Pod redaktsiei V.A. Tkachuka [Clinical biochemistry. V.A. Tkachuk (ed.)]. Moscow, 2008 (in Russ.).
  22. Shamsutdinova I.R., Derkho M.A. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2015, 6(56): 122-124 (in Russ.).
  23. Wang L., Ding W., Zhang F. Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J. Nanosci. Nanotechnol., 2010, 10(12): 8617-8624 CrossRef
  24. Yan G., Huang Y., Bu Q., Lv L., Deng P., Zhou J., Wang Y., Yang Y., Liu Q., Cen X., Zhao Y. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 2012, 47(4): 577-588 CrossRef
  25. Surekha P., Kishore A.S., Srinivas A., Selvam G., Goparaju A., Reddy P.N., Murthy P.B. Repeated dose dermal toxicity study of nano zinc oxide with Sprague-Dawley rats. Cutan. Ocul. Toxicol., 2012, 31(1): 26-32 CrossRef
  26. Ema M., Hougaard K.S., Kishimoto A., Honda K. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology
  27. Tsyganova N.A., Khairullin R.M., Terentyuk G.S., Khlebtsov B.N., Bo gatyrev V.A., Dykman L.A., Erykov S.N., Khlebtsov N.G. Penetration of pegylated gold nanoparticles through rat placental barrier. Bull. Exp. Biol. Med., 2014, 157(3): 383-385 CrossRef
  28. Zhang H., Yang D., Yang H., Liu H. Effect on conception and offspring development in female parental rats following intratracheal instillation of nano-C/ZnO and C-ZnO composite nanoparticles. Wei Sheng Yan Jiu. (Chinese), 2008, 37(6): 654-656.

back