doi: 10.15389/agrobiology.2016.4.491eng

UDC 636.4:619:579.62:579.25

Acknowledgements:
The authors thank N.V. Volozhantsev (State Research Center for Applied Microbiology and Biotechnology, Obolensk) for providing isolates of Haemophilus parasuis.

Supported by Ministry of Agriculture of the Russian Federation

 

DETERMINATION OF VIRULENCE FACTORS IN Haemophilus parasuis
ISOLATES

V.I. Pavelko, Yu.Yu. Babin, A.V. Sprygin, O.V. Pruntova

Federal Center for Animal Health Control, FGBU VNIIZZh, mkr. Yurievets, Vladimir, 600901 Russia,
e-mail vasily.pavelko@icloud.com, sprygin@arriah.ru;

Received March 29, 2016

 

Glasser’s disease is a bacterial infection typically characterized by fibrinous polyserositis, polyarthritis, meningitis, and occasionally acute pneumonia and septicemia. Haemophilus parasuis is the etiologic agent of Glasser’s disease, leading to significant economic losses in swine industry. H. parasuis normally colonizes the upper respiratory tract of healthy pigs. Significant variation in virulence, serological and genetic properties has been shown across H. parasuis strains. However, stress, concomitant viral infections, or poor immune status allow H. parasuis to cause disease. The current literature contains a few studies that clarify differences in the genome between highly virulent and avirulent strains in the context of putative virulence factors. The objective of this study was to examine H. parasuis strains isolated on Russian pig farms during the 11- year study period (2000-2011) for the presence of putative virulence loci. We screened 6 strains and 23 field isolates for the presence of 10 virulence factors. Identification of NAD-dependent isolates was performed by biochemical analysis and species-specific real-time PCR. Putative virulence genes were amplified by PCR using different primer pairs. Genetic analysis confirmed that the virulence factors (vtaA, fhuA, hhdA, hhdB, nhaC, HAPS_0254, sclB7, sclB11 and phage_related) exist in different combinations. Out of 28 strains studied, the vtaA gene was found in all strains, sclB7 and sclB11 genes were present in 24 and 25 strains respectively, the cirA genein 18 out of 28, the fhuA genein HAPS_0254, the hhdA gеne in 15, the hhdB gene in 14, the nhaC genein 12, the phage_related target in only 3 strains. Our findings identified 15 novel genotypes (LUB, Ural'skii-DEP, MB, SK-1-DEP, SK3, Krasnodar, Botovo-2, Botovo-5, Botovo-7, IL2, AI4, V171, SH6, SW124, VN). The strains IL-1-DEP, KOMI DEP and isolate Nadeevo-2 carried all the loci, except for phage_related, which has only been reported for the virulent strains IA-84-17975, IA-84-22113 and SD-84-15995. In contrast to the paper by A.B. Potehin et al. (2007), IL-1-DEP turned out to be highly virulent, KOMI DEP exhibited moderately virulence, and Nadeevo-2 showed no virulence at all. Interestingly, the vtaA group 1 gene, the main determinant of virulence, was identified in SK-1-DEP avirulent strain and Botovo-2 and Nadeevo-2 avirulent isolates. This work contributes to a better understanding of putative virulence factors in field isolates of H. parasuis.

Keywords: Haemophilus parasuis, virulence factors, Glasser’s disease.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Zaglyadova M.Kh. Rossiiskoe predprinimatel'stvo, 2013, 14: 114-118 (in Russ.) CrossRef
  2. Holtkamp D., Rotto H., Garcia R. Economic cost of major health challenges in large US swine production systems — Part 1. The Pig Site, 07 May 2007. Available http://www.thepigsite.com/articles/1935/economic-cost-of-major-health-challenges-in-large-us-swine-production-systemspart-1/. No date.
  3. Amano H., Shibata M., Kajio N., Morozumi T. Pathologic observations of pigs intranasally inoculated with serovar 1, 4 and 5 of Haemophilus parasuis using immunoperoxidase method. J. Vet. Med. Sci., 1994, 56: 639-644 CrossRef
  4. Rapp-Gabrielson V.J., Oliveira S.R., Pijoan C. Haemophilus parasuis. In: Diseases of swine. B.E. Straw, J.J. Zimmerman (eds.). Ames, John Wiley & Sons, 2013.
  5. Smart N.L., Miniats O.P., Rosendal S., Friendship R.M. Glasser’s disease and prevalence of subclinical infection with Haemophilus parasuis in swine in southern Ontario. Can. Vet. J., 1989, 30: 339-343.
  6. Olvera A., Cerdà-Cuéllar M., Aragon V. Study of the population structure of Haemophilus parasuis by multilocus sequence typing. Microbiology, 2006, 152: 3683-3690 CrossRef
  7. Mullins M.A., Register K.B., Brunelle B.W., Aragon V., Galofré-Mila N., Bayles D.O., Jolley K.A. A curated public database for multilocus sequence typing (MLST) and analysis of Haemophilus parasuis based on an optimized typing scheme. Vet. Microbiol., 2013, 162: 899-906 CrossRef
  8. Wang X., Xu X., Zhang S., Guo F., Cai X., Chen H. Identification and analysis of potential virulence-associated genes in Haemophilus parasuis based on genomic subtraction. Microb. Pathogenesis, 2011, 51: 291-296 CrossRef
  9. Olvera A., Pina S., Macedo N., Oliveira S., Aragon V., Bensaid A. Identification of potentially virulent strains of Haemophilus parasuis using a multiplex PCR for virulence-associated autotransporters (vtaA). Vet. J., 2012, 191: 213-218 CrossRef
  10. Sack M., Baltes N. Identification of novel potential virulence-associated factors in Haemophilus parasuis. Vet. Microbiol., 2009, 136: 382-386 CrossRef
  11. Brüssow H., Canchaya C., Hardt W.-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev., 2004, 68: 560-602 CrossRef
  12. Turni C., Pyke M., Blackall P.J. Validation of a real-time PCR for Haemophilus parasuis. J. Appl. Microbiol., 2010, 108(4): 1323-1331 CrossRef
  13. Pavelko V.I., Elatkin N.P., Prutnova O.V. Vestnik veterinarii, 2013, 67: 65-68 (in Russ.).
  14. Mehta C.R., Hilton J.F. Exact power of conditional and unconditional tests: going beyond the 2´2 contingency table. The American Statistician, 1993, 47(2): 91-98 CrossRef
  15. Opredelitel' bakterii Berdzhi v 2 tomakh. Tom 2 [Bergey's Manual of Determinative Bacteriology. V. 2]. Moscow, 1997 (in Russ).
  16. Zhou H., Yang B., Xu F., Chen X., Wang J., Blackall P.J., Zhang P., Xia Y., Zhang J., Ma R. Identification of putative virulence-associated genes of Haemophilus parasuis through suppression subtractive hybridization. Vet. Microbiol., 2010, 144: 377-383 CrossRef
  17. Pina S., Olvera A., Barceló A., Bensaid A. Trimeric autotransporters of Haemophilus parasuis: generation of an extensive passenger domain repertoire specific for pathogenic strains. J. Bacteriol., 2009, 191: 576-587 CrossRef
  18. Olvera A., Pina S., Pérez-Simó M., Oliveira S., Bensaid A. Virulence-associated trimeric autotransporters of Haemophilus parasuis are antigenic proteins expressed in vivo. Vet. Res., 2010, 41: 26 CrossRef
  19. Aragon V., Cerdà-Cuéllar M., Fraile L., Mombarg M., Nofrarías M., Olvera A., Sibila M., Solanes D., Segalés J. Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains. Vet. Microbiol., 2010, 142: 387-393 CrossRef
  20. Costa-Hurtado M., Ballester M., Galofré-Milà N., Darji A., Aragon V. VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages. Vet. Res., 2012, 43: 571 CrossRef
  21. Olvera A., Martínez-Moliner V., Pina-Pedrero S., Pérez-Simó M., Galofré-Milà N., Costa-Hurtado M., Aragon V., Bensaid A. Serum cross-reaction among virulence-associated trimeric autotransporters (VtaA) of Haemophilus parasuis. Vet. Microbiol., 2013, 164(3-4): 387-391 CrossRef
  22. Oliveira S.R. Validation of a species-specific PCR able to discriminate invasive and non-invasive strains of Haemophilus parasuis. Scientific Reports, 2010: 13. Available https://goo.gl/4FLKMT. No date.
  23. Howell K.J., Weinert L.A., Chaudhuri R.R., Luan S-L., Peters S.E., Corander J., Harris D., Angen Ø., Aragon V., Bensaid A., Williamson S.M., Parkhill J., Langford P.R., Rycroft A.N., Wren B.W., Holden M.T., Tucker A.W., Maskell D.J. The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genomics, 2014, 15: 1179 CrossRef
  24. Assavacheep P., Assavacheep A., Turni C. Detection of a putative hemolysin operon, hhdBA, of Haemophilus parasuis from pigs with Glässer disease. J. Vet. Diagn. Invest., 2012, 24: 339-343 CrossRef
  25. Potekhin A.V., Rusaleev V.S., Shiryaev F.A. Trudy Federal'nogo tsentra okhrany zdorov'ya zhivotnykh (Vladimir), 2007, 5: 256-263 (in Russ.).
  26. Zhang J., Xu C., Guo L., Shen H., Deng X., Ke C., Ke B., Zhang B., Li A., Ren T., Liao M. Prevalence and characterization of genotypic diversity of Haemophilus parasuis isolates from southern China. Can. J. Vet. Res., 2012, 76(3): 224-229.
  27. Blackall P.J., Turni C. Understanding the virulence of Haemophilus parasuis. Vet. J., 2013, 198(3): 549-550 CrossRef
  28. Zhao M., Liu X-D., Li X.Y., Chen H.B., Jin H., Zhou R., Zhu M.J., Zhao S.H. Systems infection biology: a compartmentalized immune network of pig spleen challenged with Haemophilus parasuis. BMC Genomics, 2013, 14: 46 CrossRef
  29. Bello-Ortí B., Aragon V., Pina-Pedrero S., Bensaid A. Genome comparison of three serovar 5 pathogenic strains of Haemophilus parasuis: insights into an evolving swine pathogen. Microbiology, 2014, 160: 1974-1984 CrossRef
  30. Li J., Peng H., Xu L-G., Xie Y-Z., Xuan X-B., Ma C-X., Hu S., Chen Z-X., Yang W., Xie Y-P., Pan Y., Tao L. Draft genome sequence of Haemophilus parasuis gx033, a serotype 4 strain isolated from the swine lower respiratory tract. Genome Announcements, 1(3): e00224-13 CrossRef

back