UDC 636.5:636.082.2:591.3

doi: 10.15389/agrobiology.2015.4.444eng


Yu.I. Zabudskii

Russian State Agrarian Correspondence University, 1, ul. Fuchika, Balashikha, 143900 Russia,
e-mail zabudsky@hotmail.com

Received February 3, 2015

Herein, the data are summarized on the impact of such selection criteria as poultry cannibalism, ascites resistance, stress responsiveness, and primary immune response to reproductive function in poultry. The selection for one of these signs changes the productivity and other body functions. High-productive meat crosses differ from slow-growing chicks in a susceptibility to ascites (R. Wideman, 2001). Broilers’ mortality because of ascites makes 5-10 %, and at the lowered temperature of the environment can reach 50 % calculated from world production (H. Pavlidis et al., 2007). Prerequisites to development of the disorder are formed during embryogenesis (E. Decuypere еt al., 2000). In the embryos who are the descendants of ascite resistant poultry (L-), a relative heart weight is reliable higher, and pipping shells and a hatching occur earlier, than in L+ genotype lines for which the hypothyroidism and tachycardia are characteristic (D. Luger et al., 2002). An observed increase in egg incubation period in L+ lines can be caused by lower activity of thyroid gland and an increased pCO2 in egg air camera, and as a result, the embryos suffered from hypoxia. A positive correlation is revealed between the development of lungs and the thyroid gland activity during embryogenesis, i.e. the lungs volume is the larger the higher thyroidal hormone rate, and vice versa (M. Hassanzadeh et al., 2008). In the chickens with better developed lungs, grown up under chronic hypoxia, the mortality from ascites was reliably lower. In L+ and L- broilers the mortality was 93.2 and 9.0 %, respectively (S. Druyan, 2009). The heart beating in L+ and L- 1-day chickens differed, being on average 435 and 404 beats per minute, respectively, but to the day 17 the difference practically leveled (419 and 417 beats per minute, respectively) due to a decreased rate in L+ and an increased rate in L-. Divergent selection for the feather pecking behavior causes differentiation in reactivity of the neuro-endocrine and immune systems (A. Buitenhuis, 2006). There are the evidences that the optimized incubation protocols for meat hens can prevent broiler chicks from ascites and improve safety of the poultry. Feather pecking reduced in the course of selected is associated with improvements in egg production (number and weight of eggs), but the deterioration in the quality of hatching eggs, the results of incubation, the state of derived chickens and changes of stress responsiveness and(or) immune response. So, the feather pecking rate was reliable lower in L- than in L+ poultry, and the number and weight of eggs laid during a month are higher (i.e. 0.38 and 2.01 feather pecking per hour, 1223 and 1132 g, 24.4 and 18.3 eggs, respectively). However, the egg quality in L+ hens was better compared to L-, with the Haugh units of 73.0 and 64.9, shell thickness of 38.1 and 37.0 mm, and yolk ration of 30.6 and 29.5 %, respectively (G. Su, 2006). Selection for humoral immune response causes the metabolic changes and influences on the synthesis of proteins which are key factors for both immune protection and ensuring reproductive function and egg production, so there is an imbalance between a potential of antibody response, growth, development and reproductive function. Under the influence of divergent selection for primary immune response, body weight, time of puberty and egg production were higher in the L- layers compared to L+ hens, while the L+ hens surpassed them in egg quality, such as height and рН of the egg white, Haugh units, the number of two-yolk eggs. The changes in reproductive function due to poultry targeted selection should be compensated by genotype-specific optimization of feed rations and rearing technologies for adult hens, and by an adjustment of egg incubation conditions.

Keywords: poultry, genotype, selection, breeding, traits, ascytes, stress responsiveness, feather pecking, antibody response, egg’s quality and incubation, embryo metabolism.


Full article (Rus)

Full text (Eng)



  1. Lilburn M., Antonelli A. The effects of genotype on embryonic development in eggs from divergent turkey genotypes. Poultry Sci., 2012, 9(4): 823-828 CrossRef
  2. Zabudskii Yu.I. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2014, 4: 16-29 CrossRef, CrossRef
  3. Cheng H., Muir M. Mechanisms of aggression and production in chickens: genetic variations in the functions of serotonin, catecholamine, and corticosterone. World’s Poult. Sci. J., 2007, 63(2): 233-254 CrossRef
  4. Wysocki M., Bessei W., Kjaer J., Bennewitz J. Genetic and physiological factors influencing feather pecking in chickens. World’s Poult. Sci. J., 2010, 66(4): 659-671 CrossRef
  5. Adriaansen-Tennekes R., Decuypere E., Parmentier H., Savelkoul H. Chicken lines selected for their primary antibody response to sheep red blood cells show differential hypothalamic-pituitary-adrenal axis responsiveness to mild stressors. PoultrySci., 2009, 88(9): 1879-1882 CrossRef
  6. Zabudskii Yu.I., Kiselev L.Yu., Delyan A.S., Kamalov R.A., Golikova A.P., Fedoseeva N.A., Myshkina M.S. Problemy biologii produktivnykh zhivotnykh, 2012, 1: 5-16.
  7. Hassanzadeh M. New approach for the incidence of ascites syndrome in broiler chickens and management control the metabolic disorders. Int. J. Poult. Sci., 2009, 8: 90-98 CrossRef
  8. Balog J. Ascites syndrome (pulmonary hypertension syndrome) in broiler chickens: Are we seeing the light at the end of the tunnel? Avian and Poultry Biology Reviews, 2003, 14: 99-126. CrossRef
  9. Druyan S., Ben-David A., Cahaner A. Development of ascites-resistant and ascites-susceptible broiler lines. Poultry Sci., 2007, 86(5): 811-822 CrossRef
  10. Kapell D., Hill W., Neeteson A.-M., McAdam J., Koerhuis A., Avendaño S. Twenty-five years of selection for improved leg health in purebred broiler lines and underlying genetic parameters. Poultry Sci., 2012, 91(12): 3032-3043 CrossRef
  11. Pavlidis H., Balog J., Stamps L., Hughes J., Huff W., Anthony N. Divergent selection for ascites incidence in chickens. Poultry Sci., 2007, 86(12): 2517-2529 CrossRef
  12. Druyan S., Shlosberg A., Cahaner A. Evaluation of growth rate, body weight, heart rate and blood parameters as potential indicators for selection against susceptibility to the ascites syndrome in young broilers. Poultry Sci., 2007, 86(4): 621-629 CrossRef
  13. Wideman R. Pathophysiology of heart/lung disorders: Pulmonary hypertension syndrome in broiler chickens. World’s Poult. Sci. J., 2001, 57(3): 289-307 CrossRef
  14. Chimene C., Buyse J., Buys N., Ladmakhi M., Albers G., Decuypere E. Interaction of genotype, egg-shell conductance and dietary T3 supplementation in the development of heart-failure syndrome and ascites in broiler-chickens. Archiv fur Gefltigelkunde, 1995, 59: 129-134.  
  15. Hassanzadeh M., Buyse J., Decuypere E. Further evidence for the involvement of anatomical parameters of cardiopulmonary system in the development of ascites syndrome in broiler chickens. Acta Veterinaria Hungarica, 2008, 56(1): 71-80 CrossRef
  16. Cherian G. Metabolic and cardiovascular diseases in poultry: role of dietary lipids. Poultry Sci., 2007, 86(5): 1012-1016 CrossRef
  17. Havenstein G., Ferket P., Qureshi M. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Sci., 2003, 82(10): 1509-1518 CrossRef
  18. Wideman R., Rhoads D., Erf G., Anthony N. Pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Poultry Sci., 2013, 92(1): 64-83 CrossRef
  19. Julian R. The response of the heart and pulmonary arteries to hypoxia, pressure, and volume: a short review. Poultry Sci., 2007, 86(5): 1006-1011 CrossRef
  20. Olkowski A. Pathophysiology of heart failure in broiler chickens: structural, biochemical, and molecular characteristics. Poultry Sci., 2007, 86(5): 999-1005 CrossRef
  21. Coleman M., Coleman G. Ascites control through proper hatchery management. Misset World Poultry, 1991, 7: 33-35.
  22. Decuypere E., Buyse J., Buys N. Ascites in broiler chickens: exogenous and endogenous structural and functional causal factors. World’s Poult. Sci. J., 2000, 56(4): 367-377 CrossRef
  23. Dewil E., Buys N., Albers G., Decuypere E. Different characteristics in chick embryos of two broiler lines differing in susceptibility to ascites. Br. Poultry Sci., 1996, 37(5): 1003-1013 CrossRef
  24. Luger D., Shinder D., Yahav S. Hyper or hypothyroidism: its association with the development of ascites syndrome in fast-growing chickens. Gen. Comp. Endocrinol., 2002, 127: 293-299 CrossRef
  25. Villamor E., Kessels C., Ruijtenbeek K., Van Suylen R., Belik J., Blanco C. Chronic in ovo hypoxia decreases pulmonary arterial contractile reactivity and induces biventricular cardiac enlargement in the chicken embryo. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology, 2004, 287(3): 642-651 CrossRef.
  26. Decuypere E. Ascites as a multifactorial syndrome of broiler chickens: considerations from a developmental and selection viewpoint. Proc. 2nd Symp. of World’s Poultry Science Association of the Iran Branch. Tehran, 2002: 119-136.
  27. Buys N., Buyse J., Hassanzadeh M., Decuypere E. Intermittent lighting reduces the incidence of ascites in broilers: an interaction with protein content of feed on performance and the endocrine system. Poultry Sci., 1998, 77(1): 54-61 CrossRef
  28. Hassanzadeh M., Bozorgmeri M., Buyse J., Bruggeman V., Decuype-
    re E. Effect of chronic hypoxia during the embryonic development on the physiological functioning and on hatching parameters related to ascites syndrome in broiler chickens. Avian Pathol., 2004, 33(6): 558-564 CrossRef
  29. Decuypere E., Onagbesan O., De Smit D., Tona K., Everaert N., Witters A., Debonne M., Verhoelst V., Buyse J., Hassanzadeh M., De Vaerdemaeker J., Arckens L., Bruggeman V. Hypoxia and hypercapnia during incubation of chicken eggs on development and subsequent performance. Proc. XII European Poultry Conf. Italy, Verona, 2006: 486-487.
  30. De Smit L., Bruggeman V., Debonne M., Tona J., Kamers B., Evera-
    ert N., Witters A., Onagbesan O., Arckens L., De Baerdemaeker J., Decuypere E. The effect of nonventilation during early incubation on the embryonic development of chicks of two commercial broiler strains differing in ascites susceptibility. Poultry Sci., 2008, 87(3): 551-560 CrossRef
  31. Buys N., Dewil E., Gonzales E. Decuypere E. Different CO2 levels during incubation interact with hatching time and ascites susceptibility in two broiler lines selected for different growth rate. Avian Pathology, 1998, 27(6): 605-612 CrossRef
  32. Christensen V., Havenstein G., Davis G. Egg characteristics, carbohydrate metabolism, and thyroid hormones in late chick embryos from different genetic lines. Poultry Sci., 1995, 74(3): 551-562 CrossRef
  33. Molenaar R., Hulet R., Meijerhof R., Maatjens C., Kemp B., Van den Brand H. High eggshell temperatures during incubation decrease growth performance and increase the incidence of ascites in broiler chickens. Poultry Sci., 2011, 90(3): 624-632 CrossRef
  34. Druyan S., Shinder D., Shlosberg A., Cahaner A., Yahav S. Physiological parameters in broiler lines divergently selected for the incidence of ascites. Poultry Sci., 2009, 88(9): 1984-1990 CrossRef
  35. Faraci F. Circulation during hypoxia in birds. Comp. Biochem. Physiol. A Comp. Physiol., 1986, 85(4): 613-620.
  36. Malan D., Scheele C., Buyse J., Kwakernaak C., Siebrits F., Van Der Klis J.,  Decuypere E. Metabolic rate and its relationship with ascites in chicken genotypes. Br. Poultry Sci., 2003, 44(2): 309-315 CrossRef
  37. Scheele C., Van Der Klis J., Kwakernaak C., Dekker R., Van Mid-delkoop J., Buyse J., Decuypere E. Ascites and venous carbon dioxide tensions in juvenile chickens of highly selected genotypes and native strains. World’s Poult. Sci. J., 2005, 61(1): 113-129 CrossRef
  38. Navara K., Pinson S. Yolk and albumen corticosterone concentrations in eggs laid by white versus brown caged laying hens. Poultry Sci., 2010, 89(7): 1509-1513 CrossRef
  39. Bulmer E., Gil D. Chronic stress in battery hens. Int. J. Poult. Sci., 2008, 7: 880-883.
  40. Downing J., Bryden W.  Determination of corticosterone concentrations in egg albumen: a non-invasive test of stress in laying hens. Physiology & Behavior, 2008, 95: 381-387 CrossRef
  41. Love O., Chin E., Wynne-Edwards K., Williams T. Stress hormones: a link between maternal condition and sex-biased reproductive investment. The American Naturalist, 2005, 166(6): 751-766 CrossRef
  42. Rubolini D., Romano M., Boncoraglio G., Ferrari R., Martinelli R., Galeotti P., Fasola M., Saino N. Effects of elevated egg corticosterone levels on behavior, growth, and immunity of yellow-legged gull (Larus michahellis) chicks. Hormones and Behavior, 2005, 47: 592-605 CrossRef
  43. Saino N., Romano M., Ferrari R., Martinelli R., Moller A. Stressed mothers lay eggs with high corticosterone levels which produce low quality offspring. The Journal of Experimental Zoology, 2005, 303A(11): 998-1006 http://dx.doi.org/10.1002/jez.a.224).
  44. Eriksen M., Torjesen H., Bakken P. Prenatal exposure to corticosterone impairs embryonic development and increases fluctuating assymetry in chickens (Gallus gallus domesticus). Br. Poultry Sci., 2003, 44(5): 690-697 CrossRef
  45. Hayward L., Wingfield J. Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen. Comp. Endocrinol., 2004, 135: 365-371 CrossRef
  46. Hayward L., Richardson J., Grogan M., Wingfield J. Sex differences in the organizational effects of corticosterone in the egg yolk of quail. Gen. Comp. Endocrinol., 2006,146: 144-148 CrossRef
  47. Schmidt J., Cole C., Zanes R., Satterlee D. Length of incubation and hatchling body weight in quail selected for reduced or exaggerated adrenocortical responsiveness to brief restraint. Br. Poultry Sci., 2009, 50(2): 266-271 CrossRef
  48. Schmidt J., Andree R., Davis K., Treese S., Satterlee D. Influence of maternal corticosterone treatment on incubation length of eggs laid by Japanese quail hens selected for divergent adrenocortical stress responsiveness. Br. Poultry Sci.,2009, 50(6): 739-747 CrossRef
  49. Blokhuis H., Van Niekerk T.,  Bessei W., Elson A., Guémemé D., Kja-
    er J., Leverino G., Nicol C., Tauson R., Weeks C., Van de Weerd H. The LayWel project: welfare implications of changes in poultry systems for laying hens. World’s Poult. Sci. J., 2007, 63(1): 101-114 CrossRef
  50. KavtarashviliA.Sh., Kolokol'nikova T.N. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2010, 4: 25-37.
  51. Hughes A., Buitenhuis A. Reduced variance of gene expression at numerous loci in a population of chickens selected for high feather pecking. Poultry Sci., 2010, 89(7): 1858-1869 CrossRef
  52. Kjaer J., Guémené D. Adrenal reactivity in lines of domestic fowl selected on feather pecking behavior. Physiology & Behavior, 2009, 96(2): 370-373 CrossRef
  53. Buitenhuis A., Kjaer J., Labouriau R., Juul-Madsen H. Altered circulating levels of serotonin and immunological changes in laying hens divergently selected for feather pecking behavior. Poultry Sci., 2006, 85(10): 1722-1728 CrossRef
  54. Cheng H., Dillworth G., Singleton P., Chen Y., Muir W. Effects of group selection for productivity and longevity on blood concentrations of serotonin, catecholamines, and corticosterone of laying hens. Poultry Sci., 2001, 80(9): 1278-1285 CrossRef
  55. Kjaer J. B., Sørensen P., Su G. Divergent selection on feather pecking behavior in laying hens (Gallus gallus domesticus). Appl. Anim. Behav. Sci., 2001, 71(3): 229-239 CrossRef
  56. Thiruvenkadan A., Panneerselvam S., Prabakaran R. Layer breeding strategies: an overview. World’s Poult. Sci. J., 2010, 66(3): 477-501 CrossRef  
  57. Buitenhuis A., Rodenburg T., Wissink P., Visscher J., Koene P., Bovenhuis H., Ducro B., Van der Poel J. Genetic and phenotypic correlations between feather pecking behavior, stress response, immune response, and egg quality traits in laying hens. Poultry Sci., 2004, 83(7): 1077-1082 CrossRef
  58. Su G., Kjaer J., Sørensen P. Divergent selection on feather pecking behavior in laying hens has caused differences between lines in egg production, egg quality, and feed efficiency. Poultry Sci., 2006, 85(2): 191-197 CrossRef
  59. Mashaly M., Heetkamp M., Parmentier H., Schrama J. Influence of genetic selection for antibody production against sheep blood cells on energy metabolism in laying hens. Poultry Sci., 2000, 79(4): 519-524 CrossRef
  60. Martin A., Dunnington E., Gross W., Briles W., Briles R., Siegel P. Production traits and alloantigen systems in lines of chickens selected for high or low antibody responses to sheep erythrocytes. Poultry Sci., 1990, 69(6): 871-878 CrossRef
  61. Van den Brand H., Parmentier H., Kemp B. Selection for antibody responses against sheep red blood cells and layer age affect egg quality. Br. Poultry Sci., 2004, 45(6): 745-752 CrossRef
  62. Zhao X., Honaker C., Siegel P. Phenotypic responses of chickens to long-term selection for high or low antibody titers to sheep red blood cells. Poultry Sci., 2012, 91(5): 1047-1056 CrossRef
  63. Albrecht H., Siegel P., Pierson F., Lewis R. Egg quality traits differ in hens selected for high as compared with low antibody response to sheep red blood cells. Poultry Sci., 2012, 91(12): 3025-3031 CrossRef
  64. Albrecht H., Siegel P. Pierson F., McGilliard M., Lewis R. Reproductive soundness is higher in chickens selected for low as compared with high antibody response. Poultry Sci., 2012, 91(8): 1796-1803 CrossRef
  65. Henk K., Parmentier L., Verhofstad M., Ger de Vries Reilingh, Nieuwland Mike G.B. Breeding for high specific immune reactivity affects sensitivity to the environment. Poultry Sci., 2012, 91(12): 3044-3051 CrossRef
  66. OST 10 321-2003. Yaitsa kurinye. Inkubatsionnye. Tekhnicheskie usloviya [Industry Standard 10 321-2003. Hen eggs for incubation. Specification]. Moscow, 2003.
  67. Koolhaas J. Coping style and immunity in animals: making sense of individual variation. Brain, Behavior, and Immunity, 2008, 22(5): 662-667 CrossRef
  68. Øverli Ø., Sørensen C., Pulman K., Pottinger T., Korzan W., Sum-
    mers C. Nilsson G. Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neuroscience and Biobehavioral Reviews, 2007, 31(3): 396-412.
  69. Koolhaas J., Bartolomucci A., Buwalda B., de Boer S., Flügge G., Korte S., Meerlo P., Murison R., Olivier B., Palanza P., Richter-Lev-
    in G., Sgoifo A.,Steimer T., Stiedl O., van Dijk G., Wöhr M., Fuchs E. Stress revisited: a critical evaluation of the stress concept. Neuroscience and Biobehavioral Reviews, 2011,35(5): 1291-1301 CrossRef
  70. Egorov I.A. Ptitsa i ptitseprodukty, 2013, 5: 8-12.   
  71. Zabudskii Yu.I. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1999, 2: 104-110.
  72. Kiselev L.Yu., Zabudskii Yu.I., Klopov M.I., Novikova N.N., Kiselev V.L., Plieva T.Kh. Problemy biologii produktivnykh zhivotnykh, 2012, 1: 52-55.  
  73. Fisinin V.I., Surai P., Kuznetsov A.I., Miftakhutdinov A.V., Terman A.A. Stressy i stressovaya chuvstvitel'nost' kur v myasnom ptitsevodstve: diagnostika i profilaktika [Stresses and stress sensitiveness in meat hens: diagnostics and prevention]. Troitsk, 2013. 
  74. Kuznetsov A.I., Miftakhutdinov A.V. Dostizheniya nauki i tekhniki APK, 2013, 1: 42-44.
  75. Dyadichkina L.F., Tsilinskaya T.V. Ptitsa i ptitseprodukty, 2011, 5: 39-43. 
  76. Zabudskii Yu.I. Ptitsevodstvo, 2004, 2: 13.
  77. Shcherbatov V.I., Vorokov V.Kh., Petrenko Yu.Yu. Ptitsevodstvo, 2015, 1: 17-22.
  78. Bur'yan M. Ptitsevodstvo, 2005, 4: 46-47.
  79. Kochish I.I., Naidenskii M.S., Ermolova Yu.S. Problemyveterinarnoisanitarii, gigienyiekologii, 2012, 2(8): 28-30.
  80. Zabudskii Yu.I. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1993, 4: 69-74.
  81. Zabudskii Yu.I., Golikova A.P.,Fedoseeva N.A. Sel'skokhozyaistvennaya biologiya [Agricultural Biology],  2012, 4: 14-21 CrossRef, CrossRef   
  82. Zabudskii Yu.I., Shuvalova M.V. Materialy XVII Mezhdunarodnoi konferentsii Vsemirnoi nauchnoi assotsiatsii po ptitsevodstvu (VNAP) (15-17 maya 2012 goda) [Proc. XVII Int. Conf. «Innovations and their use in commercial poultry», WPSA]. Sergiev Posad, 2012: 240-242.
  83. Artemov D.V. Problemy biologii produktivnykh zhivotnykh, 2014, 1: 5-20.
  84. Stanishevskaya O.I. Zootekhniya, 2010, 3: 4-5.