UDC 636.32/38:619:57.043:591.111.1

doi: 10.15389/agrobiology.2015.4.495eng

EFFECTS OF EXTERNAL γ-RADIATION ON ADENYLATE CYCLASE
ACTIVITY IN SHEEP BLOOD CELLS

T.S. Shevchenko, I.V. Konopleva

All-Russian Research Institute of Radiology and Agroecology, Federal Agency of Scientific Organizations,
109 km, Kievskoe sh., Obninsk, Kaluga Province, 239032 Russia,
e-mail riar@obninsk.org, Shevchenkotatyana@yandex.ru

Received March 5, 2015

In the mechanisms of action of various adverse factors on mammals a special part is assigned to the regulatory systems. The main regulatory system of cellular metabolism is the cAMP system. Exposure of animals to external γ-radiation results in the modification of different biochemical processes in cells. In studying diversified intercellular disorders after irradiation it is, therefore, necessary to assess functioning of the cAMP system and its key enzyme, the adenylate cyclase. Note that the data published on the effect of g-irradiation are mainly obtained with laboratory animals which are significantly different from farmed animals in the body features, whereas the effect in highly productive animals is of special interest. We studied an influence of g-irradiation on cAMP in Tsygai sheep for the first time and showed a cAMP modification both in the lymphocytes susceptible to radiation and in the thrombocytes which are relatively resistant. In this paper the data are shown on the basal and prostaglandin E1 stimulated activity of adenylate cyclase in radiosensitive blood cells of sheep exposed to total external g-radiation at a dose of 4 Gy (LD50/30) for 15 days. In the intact sheep lymphocytes a basal and E1 stimulated adenylate cyclase activity was 2.82±0.64 pmol/(min x 106 cells) and 2.49±0.43 pmol/(min x 106 cells), respectively, and in the thrombocytes it amounted 10.90±1.90 pmol/(min x 108 cells) and 15.70±5.70 pmol/(min x 108  cells), respectively. From the first day after exposure, changes have been revealed in all activity components of this enzyme in the lymphocytes and thrombocytes of sheep. The lymphocytes showed a 1.7-4.3-fold increase in the basal adenylate cyclase activity on days 1-15 and 1.3-3.8-fold increase in the stimulated activity on days 1-10. In thrombocytes the basal activity of adenylate cyclase increased 2.7 and 3.5 times on days 1 and 7, respectively, and the prostaglandin E1 stimulated activity of adenylate cyclase grew 6.9 and 5.7 times on days 1 and 7 after exposure, respectively. In all other days the adenylate cyclase activity components of interest didn’t practically differ from the initial level. This suggests that i) modification of adenylate cyclase activity is caused by postradiation alteration of the structural-functional condition of plasma membranes in these blood cells, and ii) in the peripheral blood there is a prevalence of more resistant to radiation damage subpopulation of lymphocytes and thrombocytes with increased adenylate cyclase activity.

Keywords: sheep, external γ-radiation, lymphocytes, thrombocytes, cyclic adenosine monophosphate system (cAMP), basal and prostaglandin Е1 stimulated activity of adenylate cyclase.

 

Full article (Rus)

Full text (Eng)

 

REFERENCES

  1. Faller D.M., Shilds D. Molekulyarnaya biologiya kletki [Molecular cell biology. Guide for physicians]. Moscow, 2003.
  2. Mushkambarov N.N., Kuznetsov L.M. Molekulyarnaya biologiya [Molecular biology]. Moscow, 2007.
  3. Kulinskii V.I., Kolesnichenko L.S. Biokhimiya, 2005, 70(5): 476-492. 
  4. Shirshev S.V. Biokhimiya, 2011, 76(9): 1205-1224.
  5. Smirnov A.N. Elementy endokrinnoi regulyatsii /Pod redaktsiei V.A. Tkachuka [Factors of endocrine regulation. V.A. Tkachuk (ed.)]. Moscow, 2008.
  6. Nunomura W., Takakuwa Y. Regulation of protein 4. 1R interactions with membrane proteins by Ca2+ and calmodulin. Front Biosci., 2006, 11: 1522-1539.
  7. Wang N., De Bock M., Decrock E., Bol M., Gadicherla A.A., Leybaert L., Vinken M., Rogiers V., Bukauskas F.F., Bultynck G. Paracrine signaling through plasma membrane hemichannels. Biochimica et Biophisica Acta (BBA). Biomembranes, 2013, 1828(1): 35-50 CrossRef
  8. Kupchik Y.M., Barchad-Avitzur O., Ben-Chaim Y., Parnas L., Parnas H., Wess J. A novel fast mechanism for GPCR-mediated signal transduction — control of neurotransmitter release. Journal of cell biology, 2011, 192(1): 137-151 CrossRef 
  9. Solomonova V.G., Avdonin P.P., Vinnichenko E.S., Sukhanova I.F., Avdonin P.F. Zhurnal evolyutsionnoi biokhimii i fiziologii, 2007, 43: 32-38.
  10. Avdonin P.V. Biologicheskie membrany: zhurnal membrannoi i kletochnoi biologii, 2005, 22(1): 3-26.
  11. Zamponi G.W., Currie K.P.M. Regulation of Cav2 Calcium channels by G protein coupled receptors. Biochimica et Biophisica Acta (BBA). Biomembranes, 2013, 1828(7): 1629-1643 CrossRef
  12. Sprague R., Bowles E., Stumpf M., Ricretts G., Freidman A., Hou W.H., Stephenson A., Lonigro A. Rabbit erythrocytes possess adenilate cuclase type II that is activated by the heterotrimeric G proteins Gs and Gi. Pharmacol. Rep., 2005, 57: 222-228.
  13. Sreighton J.R., Asada N., Cooper D.M., Steven T. Coordinate regulation of membrane cAMP by Ca2+-inhibited adenilyl cyclase and phosphodiesterase activities. Am. J. Physiol. Lung Cell Mol. Physiol., 2003, 284: 100-107.
  14. Francis S.H., Corbin J.D. Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit. Rev. Clin. Lab. Sci., 1999, 36(4): 275-328 CrossRef
  15. Whitefield J.F., Bounton A.L., Macmanus J.P., Korska M., Tsang B.K. The regulation of cell proliferation by calcium and cyclic AMP. Mol. Cell Biochem., 1979, 27: 155-179 CrossRef
  16. Avdonin P.V., Kozhevnikova L.M. Biologicheskie membrany: zhurnal membrannoi i kletochnoi biologii, 2007, 24(1): 4-31.
  17. Baroja-Mazo A., Barbera-Cremades M., Pelegrin P. The participation of plasma membrane hemichannels to purinergic signaling. Biochimica et Biophisica Acta (BBA). Biomembranes, 2013, 1828(1): 79-93 CrossRef
  18. Khaitov R.M., Man'ko V.M., Yarilin A.A. Uspekhi sovremennoi biologii, 2005, 125(4): 348-359.
  19. Khaitov R.M., Man'ko V.M., Yarilin A.A. Uspekhi sovremennoi biologii, 2005, 125(5): 435-445.
  20. Khaitov R.M., Man'ko V.M., Yarilin A.A. Uspekhi sovremennoi biologii, 2005, 125(6): 544-554.
  21. Khaitov R.M., Man'ko V.M., Yarilin A.A. Uspekhi sovremennoi biologii, 2006, 126(1): 3-9.
  22. Green D.R. Overview: apoptotic signaling pathways in the immune system. Immunol. Rev., 2003, 193: 5-9.
  23. Orlovskaya I.A., Kozlov V.A., Toporkova L.B. Immunologiya, 2006, 27(5): 312-316.
  24. Shaturnyi V.I., Shakhidzhanov S.S., Sveshnikova A.N., Pantele-
    ev M.A. Biomeditsinskaya khimiya, 2014, 60(2): 182-200.
  25. Manno S., Takakuwa Y., Mohandas N. Modulation of erythrocyte membrane mechanical function by protein 4.1 phosphorylation. J. Biol. Chem., 2005, 280: 7581-7587 CrossRef
  26. Muravyov A.V., Cheporov S.V., Kislov N.V., Volkova E.L. Macro- and microrheological changes in patients with solid tumors after treatment with recombinant erythropoetine (Epoetin-beta). Clin. Hemorheol. Microcirc., 2009, 41: 39-47.
  27. Muravyov A.V., Tikhomirova I.A., Maimistova A.A., Bulaeva S.V., Zamish-layev A.V. Crosstalk between adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism under red blood cell microrheological changes. Clin. Hemorheol. Microcirc., 2010, 45: 337-345.
  28. Murav'ev A.V., Koshelev V.B., Fadyukova O.E., Tikhomirova I.A., Maimistova A.A., Bulaeva S.V. Biologicheskie membrany: zhurnal membrannoi i kletochnoi biologii, 2011, 28(3): 174-180.
  29. Murav'ev A.V., Mikhailova S.G., Tikhomirova I.A. Biologicheskie membrany: zhurnal membrannoi i kletochnoi biologii, 2014, 31(4): 270-277 CrossRef
  30. Bruce J.I., Straub S.V., Yule D.I. Crosstalk between cAMP and Ca2+ signaling in non-excitable cells. Cell Calcium, 2003, 34: 431-444.
  31. Kudryashov Yu.B. Radiatsionnaya biofizika (ioniziruyushchie izlucheniya) [Radiation biophysics (ionizing radiation)]. Moscow, 2004. 
  32. Kovalenko A.N., Kovalenko V.V. Rol' tsiklicheskikh nukleotidov v realizatsii neiroendokrinnykh sdvigov posle radiatsionnogo vozdeistviya. Sistemnye radiatsionnye sindromy [The role of cyclic nucleotides in neuroendocrine changes caused by radiation]. Nikolaev, 2008.
  33. Chubanov V.S., Rogov Yu.I., Konoplya E.F., Sholukh M.V. Radiatsionnaya biologiya. Radioekologiya, 1999, 39(4): 394-398.
  34. Hunt W.A., Dulton T.K. Synthesis and degradation of cyclic nucleotides in brain after a high dose of ionizing radiation. Radiat. Res., 1981, 85(3): 604-608.
  35. Sobolev A.S. V sbornike: Problemy prirodnoi i modifitsirovannoi radiochuvstvitel'nosti [In: Natural and modified radiosensitivity]. Moscow, 1983: 205-212.
  36. Shchukin V.M. Metabolizm tsiklicheskikh nukleotidov v limfoidnykh organakh zhvachnykh zhivotnykh pri vneshnem i vnutrennem radiatsionnom vozdeistvii. Avtoreferat kandidatskoi dissertatsii [Metabolism of cyclic nucleotides in lymphoid organs of ruminants after external and internal irradiation. PhD Thesis]. Moscow, 2000.
  37. Mirzoev E.B., Kobyalko V.O., Konopleva I.V., Shevchenko T.S., Gubina O.A., Verkhovskii Yu.G. Radiatsionnaya biologiya. Radioekologiya, 2002, 42(3): 274-278.
  38. Shevchenko T.S., Konopleva I.V. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 2: 63-67.
  39. Shevchenko T.S. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2007, 6: 123-126.
  40. Shevchenko A.S. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 1988, 6: 124-125.
  41. Sobolev A.S. Radiatsionnaya biokhimiya tsiklicheskikh nukleotidov [Radiation biochemistry of cyclic nucleotides]. Moscow, 1987.
  42. Severinovskaya E.V., Zaichenko E.Yu. Uspekhi sovremennoi biologii, 2007, 127(3): 283-292.
  43. Burlakova E.B., Atkarskaya M.V., Fatkullina L.D., Andreev S.G. Radiatsionnaya biologiya. Radioekologiya, 2014, 54(2): 162-168 CrossRef
  44. Maeshima Y., Makino H. Molecular mechanism of cell injury. Contrib. Nephrol., 2003, 139: 32-43.
  45. Yarilin A.A. Deistvie ioniziruyushchei radiatsii na limfotsity (povrezhdayushchii i aktiviziruyushchii effekty). Immunologiya, 1988, 5: 5-11.
  46. Selivanova E.I., Zamulaeva I.A., Saenko A.S. Radiatsionnaya biologiya. Radioekologiya, 2014, 54(2): 153-161 CrossRef
  47. Shevchenko T.S. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2013, 4: 115-120 CrossRef, CrossRef
  48. Shevchenko T.S., Konopleva I.V. Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2011, 2: 63-67.
  49. Gresele P., Page C., Fuster V. Platelets. Cambrige, Cambrige Academy Press, 2002.

back